TEMPORAL AND SPATIAL PATTERNS IN ABOVEGROUND BIOMASS WITHIN DIFFERENT HABITATS IN A SUB-TROPICAL FOREST

In order to explore the variation in aboveground biomass among five topographically-defined habitats in old-growth forest, we measured aboveground biomass within a 20 ha permanent plot in Southern China. Aboveground biomass was estimated by using allometric regression equations. In the present study...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Tropical Forest Science. - Forest Research Institute Malaysia. - 30(2018), 2, Seite 143-153
1. Verfasser: Ma, L (VerfasserIn)
Weitere Verfasser: Shen, CY, Fu, SL, Lian, JY, Ye, WH
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of Tropical Forest Science
Schlagworte:Allometric equation environment variables habitat old-growth forest Biological sciences Physical sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST120802953
003 DE-627
005 20240625051128.0
007 cr uuu---uuuuu
008 240127s2018 xx |||||o 00| ||eng c
035 |a (DE-627)JST120802953 
035 |a (JST)26409963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, L  |e verfasserin  |4 aut 
245 1 0 |a TEMPORAL AND SPATIAL PATTERNS IN ABOVEGROUND BIOMASS WITHIN DIFFERENT HABITATS IN A SUB-TROPICAL FOREST 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In order to explore the variation in aboveground biomass among five topographically-defined habitats in old-growth forest, we measured aboveground biomass within a 20 ha permanent plot in Southern China. Aboveground biomass was estimated by using allometric regression equations. In the present study, there was no significant difference between the average aboveground biomass in 2005 (153.7 ± 58.7 mg ha−1) and in 2010 (152.3 ± 60.8 mg ha−1). Biomass also varied substantially among habitats, from 138.9 Mg ha-1 in the higher slope and lower valley habitat to 200.1 mg ha-1 in the mountain ridge habitat in 2005, and from 132.1 mg ha-1 in the lower slope to 198.8 mg ha-1 in the mountain ridge in 2010. Medium trees were the largest contributor (48%) to the total aboveground biomass within all habitats. Variability in species contributions to total habitat biomass were suggestive of species habitat preferences. This study provides a detailed overview of aboveground biomass patterns among old-growth forest habitats and highlights the importance of incorporating community characteristics and environmental variables (i.e. topography) into forest ecosystem carbon studies. The results will further our understanding of the contributions of old-growth forests to global carbon cycles and provide valuable information to improve conservation planning strategies. 
540 |a © Forest Research Institute Malaysia 
650 4 |a Allometric equation 
650 4 |a environment variables 
650 4 |a habitat 
650 4 |a old-growth forest 
650 4 |a Biological sciences  |x Ecology  |x Biomass  |x Aboveground biomass 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest habitats 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Old growth forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Tropical forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Trees 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Sanitary engineering  |x Environmental engineering  |x Pollution control  |x Carbon sequestration 
655 4 |a research-article 
700 1 |a Shen, CY  |e verfasserin  |4 aut 
700 1 |a Fu, SL  |e verfasserin  |4 aut 
700 1 |a Lian, JY  |e verfasserin  |4 aut 
700 1 |a Ye, WH  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Tropical Forest Science  |d Forest Research Institute Malaysia  |g 30(2018), 2, Seite 143-153  |w (DE-627)385613326  |w (DE-600)2142662-4  |x 25219847  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:2  |g pages:143-153 
856 4 0 |u https://www.jstor.org/stable/26409963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 30  |j 2018  |e 2  |h 143-153