Modeling the effects of abiotic and biotic factors on the depth distribution ofFucus vesiculosusin the Baltic Sea

ABSTRACT: The conspicuous retreat of the key speciesFucus vesiculosusfrom the deeper parts of its former distribution area in the Baltic Sea has triggered extensive research on the factors that control its growth. Based on recently obtained knowledge on a large number of potential drivers, we develo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 463(2012) vom: Aug., Seite 59-72
1. Verfasser: Alexandridis, Nikolaos (VerfasserIn)
Weitere Verfasser: Oschlies, Andreas, Wahl, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Depth limit Benthic ecology Eutrophication Ecological modeling Bladder wrack Biotic interactions Fucus physiology Mathematics Physical sciences Applied sciences Biological sciences
LEADER 01000caa a22002652 4500
001 JST114442150
003 DE-627
005 20240625022212.0
007 cr uuu---uuuuu
008 180606s2012 xx |||||o 00| ||eng c
035 |a (DE-627)JST114442150 
035 |a (JST)24876037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alexandridis, Nikolaos  |e verfasserin  |4 aut 
245 1 0 |a Modeling the effects of abiotic and biotic factors on the depth distribution ofFucus vesiculosusin the Baltic Sea 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: The conspicuous retreat of the key speciesFucus vesiculosusfrom the deeper parts of its former distribution area in the Baltic Sea has triggered extensive research on the factors that control its growth. Based on recently obtained knowledge on a large number of potential drivers, we developed a numerical model incorporating effects of abiotic factors on the physiological functions of photosynthesis, respiration, and reproduction and the ecological processes of competition, grazing, and epibiosis. For all input combinations, the model delivers the monthly net growth rate near the bladder wrack’s depth limit and the maximum depth of its vertical distribution. The use of data corresponding to conditions presently observed in the western Baltic Sea sets the year’s maximum algal net growth rate in late spring and 2 minima in early spring and autumn. The depth limit of the wrack’s distribution is set at ~9 m. Light and its absorption by phytoplankton represent by far the most important factors controlling the modeled net growth rate and depth penetration, with the role of epibiosis requiring further investigation. Lacking findings on population dynamics and biotic interactions restrict the generated model to an exploratory rather than a predictive tool. 
540 |a © Inter-Research 2012 
650 4 |a Depth limit 
650 4 |a Benthic ecology 
650 4 |a Eutrophication 
650 4 |a Ecological modeling 
650 4 |a Bladder wrack 
650 4 |a Biotic interactions 
650 4 |a Fucus physiology 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical models  |x Parametric models 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Ecology  |x Ecological modeling 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x System physiology  |x Respiratory physiology  |x Respiratory processes  |x Respiration 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant physiology  |x Plant growth 
650 4 |a Mathematics  |x Mathematical values  |x Mathematical variables  |x Mathematical independent variables 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae  |x Macroalgae 
650 4 |a Physical sciences  |x Metrology  |x Radiometry  |x Irradiance 
655 4 |a research-article 
700 1 |a Oschlies, Andreas  |e verfasserin  |4 aut 
700 1 |a Wahl, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 463(2012) vom: Aug., Seite 59-72  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:463  |g year:2012  |g month:08  |g pages:59-72 
856 4 0 |u https://www.jstor.org/stable/24876037  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 463  |j 2012  |c 08  |h 59-72