Temperature-induced microbubbles within natural marine samples may inflate small-particle counts in a Coulter Counter

ABSTRACT: The Coulter Counter, a common instrument used to enumerate phytoplankton, may over-estimate counts of particles <2.5 μm in equivalent spherical diameter (ESD) by an order of magnitude when samples are run at temperatures cooler than ambient laboratory conditions. This phenomenon is like...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 450(2012) vom: März, Seite 275-280
1. Verfasser: Rice, Edward J. (VerfasserIn)
Weitere Verfasser: Panzeca, Caterina, Stewart, Gillian M.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Coulter Counter Microbubbles Temperature Particle size Picoplankton Business Biological sciences Physical sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST114440956
003 DE-627
005 20240625022155.0
007 cr uuu---uuuuu
008 180606s2012 xx |||||o 00| ||eng c
035 |a (DE-627)JST114440956 
035 |a (JST)24875911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rice, Edward J.  |e verfasserin  |4 aut 
245 1 0 |a Temperature-induced microbubbles within natural marine samples may inflate small-particle counts in a Coulter Counter 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: The Coulter Counter, a common instrument used to enumerate phytoplankton, may over-estimate counts of particles <2.5 μm in equivalent spherical diameter (ESD) by an order of magnitude when samples are run at temperatures cooler than ambient laboratory conditions. This phenomenon is likely due to microbubbles generated as a colder sample warms. Evidence for this mechanism derives from the observation that increasing the relative fraction of organic-rich coastal water in warming samples results in increased amplification of small-particle counts due to the stabilization of microbubbles. Count amplification can be eliminated by ensuring there is no temperature difference between the diluent and the sample. Failing to correct for this error confounds analysis of marine phytoplankton size spectra, complicating a broad range of experiments from those measuring productivity to those used to develop ecosystem-based models. 
540 |a © Inter-Research 2012 
650 4 |a Coulter Counter 
650 4 |a Microbubbles 
650 4 |a Temperature 
650 4 |a Particle size 
650 4 |a Picoplankton 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Chemicals industries  |x Chemical products  |x Additives  |x Diluents 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Saltwater  |x Sea water 
650 4 |a Applied sciences  |x Technology  |x Tools  |x Measuring instruments  |x Radiation measuring instruments  |x Radiation counters 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Nearshore water  |x Coastal water 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans 
650 4 |a Physical sciences  |x Physics  |x Thermodynamics  |x Thermal analysis  |x Temperature  |x Room temperature 
650 4 |a Physical sciences  |x Physics  |x Thermodynamics  |x Thermal analysis  |x Temperature  |x Ambient temperature 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water samples 
650 4 |a Physical sciences  |x Physics  |x Thermodynamics  |x Thermal analysis  |x Temperature  |x Temperature distribution  |x Temperature gradients  |x NOTE 
655 4 |a research-article 
700 1 |a Panzeca, Caterina  |e verfasserin  |4 aut 
700 1 |a Stewart, Gillian M.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 450(2012) vom: März, Seite 275-280  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:450  |g year:2012  |g month:03  |g pages:275-280 
856 4 0 |u https://www.jstor.org/stable/24875911  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 450  |j 2012  |c 03  |h 275-280