Environmental controls onEmiliania huxleyimorphotypes in the Benguela coastal upwelling system (SE Atlantic)

ABSTRACT: Two distinct morphotypes of the coccolithophoreEmiliania huxleyiwere observed as part of the phytoplankton succession offshore of Namibia, where coastal upwelling created strong gradients in sea surface temperature (SST), salinity, and nutrient conditions. The sampled surface waters hosted...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research Science Center, 1979. - 448(2012) vom: Feb., Seite 51-66
1. Verfasser: Henderiks, Jorijntje (VerfasserIn)
Weitere Verfasser: Winter, Amos, Elbrächter, Malte, Feistel, Rainer, van der Plas, Anja, Nausch, Guenther, Barlow, Ray
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Emiliania huxleyi Morphology Ecology Plankton succession Coastal upwelling Namibia Physical sciences Biological sciences Applied sciences
LEADER 01000caa a22002652c 4500
001 JST114440328
003 DE-627
005 20240625022146.0
007 cr uuu---uuuuu
008 180606s2012 xx |||||o 00| ||eng c
035 |a (DE-627)JST114440328 
035 |a (JST)24875846 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Henderiks, Jorijntje  |e verfasserin  |4 aut 
245 1 0 |a Environmental controls onEmiliania huxleyimorphotypes in the Benguela coastal upwelling system (SE Atlantic) 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: Two distinct morphotypes of the coccolithophoreEmiliania huxleyiwere observed as part of the phytoplankton succession offshore of Namibia, where coastal upwelling created strong gradients in sea surface temperature (SST), salinity, and nutrient conditions. The sampled surface waters hosted a characteristic succession of phytoplankton communities: diatoms bloomed in newly upwelled waters above the shelf, whereas dense coccolithophore communities dominated byE. huxleyiwere found farther offshore, in progressively aging upwelled waters. A substantially calcifiedE. huxleyimorphotype (labeled Type A*) dominated plankton assemblages at stations influenced by upwelling, that immediately succeeded coastal diatom blooms. This morphotype caused a chlorophyll and 19’-hexanoyloxyfucoxanthin (19’-HF) maximum with >1 × 10⁶ cells l−1, straddling a pycnocline at 17 m depth where thein situN:P ratio was ≈13. Farther offshore, within <20 nautical miles distance, populations of Type A* drastically declined, and a more delicate morphotype with thin distal shield elements and open central area (Type B/C) was found. This morphotype was most abundant (~0.2 × 10⁶ cells l−1) in high-phosphate, nitrogen-depleted surface waters (N:P ≈ 8), where it co-existed with other coccolithophores, most notablySyracosphaeraspp. Extensive surface blooms of coccolithophores observed by satellites in the same region in the past were identified by microscopy as being produced byE. huxleyiandS. pulchra. However, blooms ofE. huxleyiat greater depths in the euphotic zone, such as those observed in this study, will go undetected by satellites and thus underestimate coccolithophore biomass and calcification within upwelling regions. 
540 |a © Inter-Research 2012 
650 4 |a Emiliania huxleyi 
650 4 |a Morphology 
650 4 |a Ecology 
650 4 |a Plankton succession 
650 4 |a Coastal upwelling 
650 4 |a Namibia 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Upwelling water 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Saltwater  |x Sea water 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae  |x Diatoms 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans 
650 4 |a Biological sciences  |x Biochemistry  |x Biomolecules  |x Biological pigments  |x Chlorophylls 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton 
650 4 |a Applied sciences  |x Materials science  |x Materials  |x Pigments 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water samples 
655 4 |a research-article 
700 1 |a Winter, Amos  |e verfasserin  |4 aut 
700 1 |a Elbrächter, Malte  |e verfasserin  |4 aut 
700 1 |a Feistel, Rainer  |e verfasserin  |4 aut 
700 1 |a van der Plas, Anja  |e verfasserin  |4 aut 
700 1 |a Nausch, Guenther  |e verfasserin  |4 aut 
700 1 |a Barlow, Ray  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research Science Center, 1979  |g 448(2012) vom: Feb., Seite 51-66  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnas 
773 1 8 |g volume:448  |g year:2012  |g month:02  |g pages:51-66 
856 4 0 |u https://www.jstor.org/stable/24875846  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4027 
912 |a GBV_ILN_4028 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4266 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4309 
912 |a GBV_ILN_4310 
912 |a GBV_ILN_4311 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4314 
912 |a GBV_ILN_4316 
912 |a GBV_ILN_4317 
912 |a GBV_ILN_4319 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 448  |j 2012  |c 02  |h 51-66