Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent

ABSTRACT: Understanding how nuclear power plant thermal effluents influence the phytoplankton community may provide insights into the potential ecological consequences of global warming. In the present study, long-term trends in the phytoplankton community structure under the influence of nuclear po...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 424(2011) vom: März, Seite 75-85
1. Verfasser: Li, Tao (VerfasserIn)
Weitere Verfasser: Liu, Sheng, Huang, Liangmin, Huang, Hui, Lian, Jiansheng, Yan, Yan, Lin, Senjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Daya Bay Nuclear power plant Thermal effluent Phytoplankton Ecological effects Biological sciences Physical sciences Applied sciences Environmental studies Business
LEADER 01000caa a22002652 4500
001 JST114434069
003 DE-627
005 20240625022025.0
007 cr uuu---uuuuu
008 180606s2011 xx |||||o 00| ||eng c
035 |a (DE-627)JST114434069 
035 |a (JST)24874606 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Tao  |e verfasserin  |4 aut 
245 1 0 |a Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: Understanding how nuclear power plant thermal effluents influence the phytoplankton community may provide insights into the potential ecological consequences of global warming. In the present study, long-term trends in the phytoplankton community structure under the influence of nuclear power plant thermal effluent in the subtropical Daya Bay (DYB) in China were investigated in the summer season from 1982 to 2005. Water temperature at the outfall station was significantly higher than in the surrounding water, by as much as 5.6°C, and increased by 6.8°C during the 23 yr study period. The contribution of diatoms and dinoflagellates to the total phytoplankton showed significant correlation with temperature (R² > 0.65), negative for diatoms, while positive for dinoflagellates. Although dinoflagellate abundance increased over time at both the outfall and adjacent (control) stations, the increase at the outfall station was much more dramatic and accelerated over time. No clear relationship between the phytoplankton shift and stratification was evident. When water temperature reached 35°C or >3.7°C above that at the control station, dinoflagellates, such asCeratium furca,C. fusus,C. trichoceros,Dinophysis caudateandProtoperidinium depressum, grew to prominence, accounting for about 50% of the total phytoplankton abundance. On the contrary, the diatom contribution decreased during the study period, from 82.0% in 1982 to 53.1% in 2005. These results suggest that the rise in temperature caused by power plant thermal discharge has imposed strong influences on the phytoplankton community, favoring dinoflagellates over diatoms, with a remarkable diatom to dinoflagellate shift when temperature increases to a threshold level of 35°C or reaches a threshold differential of 3.7°C relative to the normal ambient temperature in DYB. 
540 |a © Inter-Research 2011 
650 4 |a Daya Bay 
650 4 |a Nuclear power plant 
650 4 |a Thermal effluent 
650 4 |a Phytoplankton 
650 4 |a Ecological effects 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae  |x Diatoms 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Aquatic communities 
650 4 |a Physical sciences  |x Physics  |x Thermodynamics  |x Thermal analysis  |x Temperature  |x Water temperature 
650 4 |a Applied sciences  |x Materials science  |x Surface science  |x Surface properties  |x Surface temperature 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Construction engineering  |x Building construction  |x Heating ventilation and cooling  |x Temperature control 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental degradation  |x Environmental pollution  |x Water pollution 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Energy industry  |x Electric power industry  |x Electric power facilities  |x Electric power plants  |x Nuclear power plants 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
655 4 |a research-article 
700 1 |a Liu, Sheng  |e verfasserin  |4 aut 
700 1 |a Huang, Liangmin  |e verfasserin  |4 aut 
700 1 |a Huang, Hui  |e verfasserin  |4 aut 
700 1 |a Lian, Jiansheng  |e verfasserin  |4 aut 
700 1 |a Yan, Yan  |e verfasserin  |4 aut 
700 1 |a Lin, Senjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 424(2011) vom: März, Seite 75-85  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:424  |g year:2011  |g month:03  |g pages:75-85 
856 4 0 |u https://www.jstor.org/stable/24874606  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 424  |j 2011  |c 03  |h 75-85