Deducing ballast water sources in ships arriving in New Zealand from southeastern Australia

ABSTRACT: The transfer of organisms in ballast water of commercial ships is a leading cause of biological invasions in coastal ecosystems. Ships arriving in New Zealand are now required to treat their ballast water to reduce the risk of transferring invasive aquatic organisms between ports. Most of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 390(2009) vom: Sept., Seite 39-53
1. Verfasser: Murphy, Kathleen R. (VerfasserIn)
Weitere Verfasser: Boehme, Jennifer R., Noble, Monaca, Smith, George, Ruiz, Gregory M.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Ballast water exchange Tracers Fluorescence Trace elements Shipping Verification Aquatic invasive species Applied sciences Physical sciences Business
LEADER 01000caa a22002652 4500
001 JST114423237
003 DE-627
005 20240625021806.0
007 cr uuu---uuuuu
008 180606s2009 xx |||||o 00| ||eng c
035 |a (DE-627)JST114423237 
035 |a (JST)24873627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Murphy, Kathleen R.  |e verfasserin  |4 aut 
245 1 0 |a Deducing ballast water sources in ships arriving in New Zealand from southeastern Australia 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: The transfer of organisms in ballast water of commercial ships is a leading cause of biological invasions in coastal ecosystems. Ships arriving in New Zealand are now required to treat their ballast water to reduce the risk of transferring invasive aquatic organisms between ports. Most of these ships conduct mid-ocean ballast water exchange (BWE), replacing coastal water with open ocean water, but methods to verify BWE have been lacking. Samples were collected from ballast tanks and the ambient ocean on ships trading between southeastern Australia and New Zealand, to test the use of chemical (chromophoric dissolved organic matter or CDOM, Ba, Mn and P) concentrations to discriminate ballast water sources. Australian ballast water provides a difficult and valuable test case for BWE verification due to its high salinity and low chemical tracer concentrations resulting from Australia’s low rainfall and nutrient-poor soils. Our results indicate that elevated CDOM, Ba and Mn were robust tracers of port waters, whereas elevated P was not a diagnostic tracer except of ballast water originating from Port Phillip Bay. Exchanged ballast tanks were diagnosed by CDOM fluorescence below 2.1 (for wavelength pair C2*, Ex/Em = 320/414 nm) and 1.2 (for wavelength pair C3*, Ex/Em = 370/494 nm) (quinine sulfate equivalents, QSE), and Ba and Mn concentrations below 5.7 and 3.5 μg l–1respectively. These results are consistent with recent studies in the northern hemisphere, indicating that elevated concentrations of these tracers are robust indicators of unexchanged ballast water. Whereas clear differences existed between port and oceanic signatures, coastal and oceanic samples could not always be distinguished due to precipitously declining tracer concentrations within short distances from land. 
540 |a © Inter-Research 2009 
650 4 |a Ballast water exchange 
650 4 |a Tracers 
650 4 |a Fluorescence 
650 4 |a Trace elements 
650 4 |a Shipping 
650 4 |a Verification 
650 4 |a Aquatic invasive species 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Vehicle components  |x Suspension systems  |x Ships ballast  |x Ballast water 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Vehicle components  |x Suspension systems  |x Ballast tanks 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Marine engineering  |x Marine structures  |x Harbors  |x Ports 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Saltwater  |x Sea water 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Service industries  |x Transportation industries  |x Travel industry  |x Tourism  |x Cruises 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Nearshore water  |x Coastal water 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Watercraft  |x Ships 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Salinity 
650 4 |a Physical sciences  |x Physics  |x Fundamental forces  |x Electromagnetism  |x Electromagnetic radiation  |x Light  |x Luminescence  |x Fluorescence 
655 4 |a research-article 
700 1 |a Boehme, Jennifer R.  |e verfasserin  |4 aut 
700 1 |a Noble, Monaca  |e verfasserin  |4 aut 
700 1 |a Smith, George  |e verfasserin  |4 aut 
700 1 |a Ruiz, Gregory M.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 390(2009) vom: Sept., Seite 39-53  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:390  |g year:2009  |g month:09  |g pages:39-53 
856 4 0 |u https://www.jstor.org/stable/24873627  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 390  |j 2009  |c 09  |h 39-53