Coral defence against macroalgae: : differential effects of mesenterial filaments on the green algaHalimeda opuntia

ABSTRACT: Several studies have shown that the growth of macroalgae is reduced when in contact with corals, but very few have addressed the mechanisms involved. This study provides for the first time an explicative mechanism for the inhibition of algal growth by scleractinian corals. In experimental...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 278(2004) vom: Sept., Seite 103-114
1. Verfasser: Nugues, Maggy M. (VerfasserIn)
Weitere Verfasser: Delvoye, L., Bak, Rolf P. M.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Coral–algal competition Defence mechanisms Algae Coral Competition Scleractinian Caribbean Biological sciences Applied sciences Physical sciences mehr... Business Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST114392560
003 DE-627
005 20240625021052.0
007 cr uuu---uuuuu
008 180606s2004 xx |||||o 00| ||eng c
035 |a (DE-627)JST114392560 
035 |a (JST)24867757 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nugues, Maggy M.  |e verfasserin  |4 aut 
245 1 0 |a Coral defence against macroalgae:  |b differential effects of mesenterial filaments on the green algaHalimeda opuntia 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: Several studies have shown that the growth of macroalgae is reduced when in contact with corals, but very few have addressed the mechanisms involved. This study provides for the first time an explicative mechanism for the inhibition of algal growth by scleractinian corals. In experimental field contacts between 8 species of scleractinian corals and the green algaHalimeda opuntia, corals extruded their mesenterial filaments (MFs) onto the plant. In some coral species, this extrusion was followed by persistent discolouration of the contacting algal segments. Microscopic examination of these segments revealed migration of chloroplasts away from the surface of segments, as well as the presence of nematocysts from the MFs fired into the algal epidermis. There was a significant relationship between the extent of algal discolouration and both the occurrence and length of the MFs, potentially explaining differences among coral species in their ability to damage algal segments. MF extrusion also occurred in experimental contacts with 2 other species of macroalgae (Lobophora variegataandDictyotasp.). The use of extruded MFs by scleractinian corals against macroalgae is similar to their aggressive behaviour against other scleractinian coral species. However, the ranking of competitive ability againstH. opuntia(measured by the extent of algal discolouration) differed from that established in interspecific aggressions among corals. The great abundance and wide distribution of the species of corals and macroalgae used in this study, together with observations of MFs in natural interactions, suggest that the use of MFs is a common and widespread mechanism of interaction between corals and macroalgae. We conclude that coral–algal competition involves complex mechanisms and is therefore likely to represent a complex hierarchical structure, in which macroalgae are not always able to overgrow and kill corals. 
540 |a © Inter-Research 2004 
650 4 |a Coral–algal competition 
650 4 |a Defence mechanisms 
650 4 |a Algae 
650 4 |a Coral 
650 4 |a Competition 
650 4 |a Scleractinian 
650 4 |a Caribbean 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Habitats  |x Aquatic habitats  |x Coral reefs 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Invertebrates  |x Aquatic invertebrates  |x Corals 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae  |x Macroalgae 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cellular structures  |x Intracellular space  |x Organelles  |x Chloroplasts 
650 4 |a Applied sciences  |x Materials science  |x Physical damage  |x Fire damage 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Coastal landforms  |x Coastal barriers  |x Reefs 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Body tissues  |x Epithelium  |x Epidermis 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Consumer goods industries  |x Clothing industry  |x Clothing 
650 4 |a Behavioral sciences  |x Human behavior  |x Social behavior  |x Tact 
655 4 |a research-article 
700 1 |a Delvoye, L.  |e verfasserin  |4 aut 
700 1 |a Bak, Rolf P. M.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 278(2004) vom: Sept., Seite 103-114  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:278  |g year:2004  |g month:09  |g pages:103-114 
856 4 0 |u https://www.jstor.org/stable/24867757  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 278  |j 2004  |c 09  |h 103-114