Spatial structure of recruitment in the musselPerna pernaat local scales: : effects of adults, algae and recruit size

ABSTRACT: To test the assumption that there is no spatial structure in small-scale recruitment variability of rocky shore mussels, we examined spatial dependence in the distribution of density of recruits (late plantigrades: 0.5 to 3.5 mm; larger recruits: 3.5 to 10 mm) and adults of the brown musse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 267(2004) vom: Feb., Seite 173-185
1. Verfasser: Erlandsson, Johan (VerfasserIn)
Weitere Verfasser: McQuaid, Christopher D.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Recruitment heterogeneity Intertidal mussel distribution South Africa Fractal dimension Spatial dependence Multi-scaling patchiness Business Biological sciences Mathematics Applied sciences mehr... Social sciences Physical sciences Information science
LEADER 01000caa a22002652 4500
001 JST114390959
003 DE-627
005 20240625021032.0
007 cr uuu---uuuuu
008 180606s2004 xx |||||o 00| ||eng c
035 |a (DE-627)JST114390959 
035 |a (JST)24867590 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Erlandsson, Johan  |e verfasserin  |4 aut 
245 1 0 |a Spatial structure of recruitment in the musselPerna pernaat local scales:  |b effects of adults, algae and recruit size 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT: To test the assumption that there is no spatial structure in small-scale recruitment variability of rocky shore mussels, we examined spatial dependence in the distribution of density of recruits (late plantigrades: 0.5 to 3.5 mm; larger recruits: 3.5 to 10 mm) and adults of the brown musselPerna pernawithin local scales (30 lags ranging between 0.35 and 10.5 m) in mid- and upper mussel beds. Spatial heterogeneity was estimated by analyzing scaling properties of semivariograms using a fractal approach. Relationships between density of mussel recruits and adults and biomass of the red algaGelidium pristoidesat the different scales were examined by cross-semivariograms. We found that the distribution of adults showed spatial dependence at all transects, often with higher spatial heterogeneity (higher fractal dimension,D) at smaller scales (1st scaling region). The distribution of larger recruits exhibited spatial dependence at all transects, revealing a spatial structure, which was related to that of adults. In contrast, the distribution of late plantigrades showed mainly spatial independence (random pattern; 1.97 <D≤ 2). Densities of both size classes of recruits were positively related to those of adults at all transects and scales, but the relationship was stronger for larger recruits than late plantigrades, explaining why there was clearer spatial structure of larger recruits. The relationship with algae was mainly negative for larger recruits, while it tended to be positive at many scales for late plantigrades. Thus, both adult mussels andG. pristoidesare suitable habitats for plantigrades, while mussels are the main habitat for larger recruits. This may mean that recruits on algae either die or migrate to mussel clumps at a certain size. This study highlights the importance of recruit size when analyzing recruitment patchiness of mussels, and has implications for sustainable management ofP. perna. 
540 |a © Inter-Research 2004 
650 4 |a Recruitment heterogeneity 
650 4 |a Intertidal mussel distribution 
650 4 |a South Africa 
650 4 |a Fractal dimension 
650 4 |a Spatial dependence 
650 4 |a Multi-scaling patchiness 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Consumer goods industries  |x Clothing industry  |x Clothing  |x Clothing accessories  |x Footwear  |x Overshoes  |x Spats 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mollusks  |x Mussels 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Phycology  |x Algae 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical physics  |x Dimensional analysis  |x Dimensionality  |x Abstract spaces  |x Fractal dimensions 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Marine engineering  |x Marine structures  |x Harbors  |x Ports 
650 4 |a Social sciences  |x Population studies  |x Mortality 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Coastal landforms  |x Coasts 
650 4 |a Information science  |x Information analysis  |x Data analysis  |x Regression analysis  |x Linear regression 
650 4 |a Mathematics  |x Mathematical objects  |x Fractals 
650 4 |a Biological sciences  |x Ecology  |x Biomass 
655 4 |a research-article 
700 1 |a McQuaid, Christopher D.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 267(2004) vom: Feb., Seite 173-185  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:267  |g year:2004  |g month:02  |g pages:173-185 
856 4 0 |u https://www.jstor.org/stable/24867590  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 267  |j 2004  |c 02  |h 173-185