Lake ecological assessment metrics in Ireland: relationships with phosphorus and typology parameters and the implications for setting nutrient standards

The current national surface water monitoring programme in Ireland includes 224 lakes. Monitoring data from the period 2012–14 are used to evaluate the performance of ecological assessment metrics in responding to eutrophication pressure, as indicated by average total phosphorus concentration (TP)....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Biology and Environment: Proceedings of the Royal Irish Academy. - Royal Irish Academy, 2016. - 116B(2016), 3, Seite 191-204
Format: Online-Aufsatz
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Biology and Environment: Proceedings of the Royal Irish Academy
Schlagworte:Biological sciences Physical sciences Environmental studies
LEADER 01000caa a22002652 4500
001 JST113648200
003 DE-627
005 20240625005902.0
007 cr uuu---uuuuu
008 180605s2016 xx |||||o 00| ||en c
024 7 |a 10.3318/bioe.2016.18  |2 doi 
035 |a (DE-627)JST113648200 
035 |a (JST)bioe.2016.18 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a en 
245 1 0 |a Lake ecological assessment metrics in Ireland: relationships with phosphorus and typology parameters and the implications for setting nutrient standards 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The current national surface water monitoring programme in Ireland includes 224 lakes. Monitoring data from the period 2012–14 are used to evaluate the performance of ecological assessment metrics in responding to eutrophication pressure, as indicated by average total phosphorus concentration (TP). For 70 surveillance lakes, the r2 or relationships with TP was 0.65 for phytoplankton, 0.65 for macrophytes, 0.59 for phytobenthos and 0.32 for fish. Following normalisation of the Ecological Quality Ratios (EQR) to a 0–1 scale; averaging together the results for phytobenthos, phytoplankton and macrophytes resulted in a higher r2 of 0.84 with TP. Using the ecological boundaries intercalibrated across the EU, the corresponding TP concentrations for the high/good and good/moderate boundary ranged from 8 to 11 and 16 to 30 μg l−1 respectively. Non-parametric multiplicative regression was used to examine the strength of influence of typological parameters on the relationship between the assessment metrics and TP. Typological factors found to be significant for these models included lake area, mean depth and alkalinity. However, the most important model parameter, as indicated by higher sensitivity values, was TP. This was in part because metrics were designed to detect eutrophication pressure, but also because typological factors are already considered in both metric application and through type-specific EQR boundaries (for example, through incorporating depth or alkalinity in typology). Marl lakes may represent a more sensitive lake subtype requiring derivation of separate, more appropriate environmental quality standards. Further analysis in this regard is required. 
540 |a © Royal Irish Academy 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Aquatic plants  |x Macrophytes 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Freshwater ecology 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental assessment 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Fish  |x Freshwater fishes 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Aquatic communities 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Alkalinity 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Lakes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Phosphorus 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Aquatic plants  |x Macrophytes 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Freshwater ecology 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental assessment 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Fish  |x Freshwater fishes 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Aquatic communities 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Alkalinity 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Lakes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Phosphorus 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Biology and Environment: Proceedings of the Royal Irish Academy  |d Royal Irish Academy, 2016  |g 116B(2016), 3, Seite 191-204  |w (DE-627)379481561  |w (DE-600)2135794-8  |x 2009003X  |7 nnns 
773 1 8 |g volume:116B  |g year:2016  |g number:3  |g pages:191-204 
856 4 0 |u https://www.jstor.org/stable/10.3318/bioe.2016.18  |3 Volltext 
856 4 0 |u https://doi.org/10.3318/bioe.2016.18  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2944 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
951 |a AR 
952 |d 116B  |j 2016  |e 3  |h 191-204