Disproportionate Contribution of Riparian Inputs to Organic Carbon Pools in Freshwater Systems

A lack of appropriate proxies has traditionally hampered our ability to distinguish riverine organic carbon (OC) sources at the landscape scale. However, the dissection of C₄ grasslands by C₃-enriched riparian vegetation, and the distinct carbon stable isotope signature (δ¹³C) of these two photosynt...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecosystems. - Springer Science + Business Media. - 17(2014), 6, Seite 974-989
1. Verfasser: Marwick, Trent R. (VerfasserIn)
Weitere Verfasser: Borges, Alberto Vieira, Van Acker, Kristof, Darchambeau, François, Bouillon, Steven
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Ecosystems
Schlagworte:Biological sciences Physical sciences Environmental studies
LEADER 01000caa a22002652 4500
001 JST113252269
003 DE-627
005 20240625003330.0
007 cr uuu---uuuuu
008 180605s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST113252269 
035 |a (JST)43677649 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marwick, Trent R.  |e verfasserin  |4 aut 
245 1 0 |a Disproportionate Contribution of Riparian Inputs to Organic Carbon Pools in Freshwater Systems 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a A lack of appropriate proxies has traditionally hampered our ability to distinguish riverine organic carbon (OC) sources at the landscape scale. However, the dissection of C₄ grasslands by C₃-enriched riparian vegetation, and the distinct carbon stable isotope signature (δ¹³C) of these two photosynthetic pathways, provides a unique setting to assess the relative contribution of riparian and more distant sources to riverine C pools. Here, we compared δ¹³C signatures of bulk sub-basin vegetation (δ¹³CVEG) with those of riverine OC pools for a wide range of sites within two contrasting river basins in Madagascar. Although C₃-derived carbon dominated in the eastern Rianala catchment, consistent with the dominant vegetation, we found that in the C₄-dominated Betsiboka basin, riverine OC is disproportionately sourced from the C₃-enriched riparian fringe, irrespective of climatic season, even though δ¹³CVEG estimates suggest as much as 96% of vegetation cover in some Betsiboka sub-basins may be accounted for by C₄ biomass. For example, δ¹³C values for river bed OC were on average 6.9 ± 2.7‰ depleted in ¹³C compared to paired estimates of δ¹³CVEG. The disconnection of the wider C₄-dominated basin is considered the primary driver of the under-representation of C₄-derived C within riverine OC pools in the Betsiboka basin, although combustion of grassland biomass by fire is likely a subsidiary constraint on the quantity of terrestrial organic matter available for export to these streams and rivers. Our findings carry implications for the use of sedimentary δ¹³C signatures as proxies for past forest-grassland distribution and climate, as the C₄ component may be considerably underestimated due to its disconnection from riverine OC pools. 
540 |a © 2014 Springer Science+Business Media New York 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Nonmetals  |x Carbon 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Seasons  |x Dry seasons 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Seasons  |x Rainy seasons 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Grasslands  |x Riparian grasslands 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water  |x Streams 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x River basins 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Nonmetals  |x Carbon  |x Carbon isotopes 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Riparian soils 
655 4 |a research-article 
700 1 |a Borges, Alberto Vieira  |e verfasserin  |4 aut 
700 1 |a Van Acker, Kristof  |e verfasserin  |4 aut 
700 1 |a Darchambeau, François  |e verfasserin  |4 aut 
700 1 |a Bouillon, Steven  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecosystems  |d Springer Science + Business Media  |g 17(2014), 6, Seite 974-989  |w (DE-627)270937773  |w (DE-600)1478731-3  |x 14350629  |7 nnns 
773 1 8 |g volume:17  |g year:2014  |g number:6  |g pages:974-989 
856 4 0 |u https://www.jstor.org/stable/43677649  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_267 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 17  |j 2014  |e 6  |h 974-989