Using carbon and hydrogen isotopes to quantify gas maturity, formation temperature, and formation age – specific applications for gas fields from the Tarim Basin, China

The kinetic fractionation model for hydrogen isotope fractionation for methane, ethane and propane formation is tested in this study. The model agrees very well with the current existing model of carbon isotope fractionation for coal-derived gas from the Kuqa depression, Tarim basin, China. The stro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Energy Exploration & Exploitation. - Sage Publications, Ltd.. - 30(2012), 2, Seite 273-293
1. Verfasser: Ni, Yunyan (VerfasserIn)
Weitere Verfasser: Liao, Fengrong, Dai, Jinxing, Zou, Caineng, Zhu, Guangyou, Zhang, Bin, Liu, Quanyou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Energy Exploration & Exploitation
Schlagworte:Physical sciences Business Applied sciences
LEADER 01000caa a22002652 4500
001 JST112770614
003 DE-627
005 20240624235945.0
007 cr uuu---uuuuu
008 240126s2012 xx |||||o 00| ||eng c
035 |a (DE-627)JST112770614 
035 |a (JST)26161210 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ni, Yunyan  |e verfasserin  |4 aut 
245 1 0 |a Using carbon and hydrogen isotopes to quantify gas maturity, formation temperature, and formation age – specific applications for gas fields from the Tarim Basin, China 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The kinetic fractionation model for hydrogen isotope fractionation for methane, ethane and propane formation is tested in this study. The model agrees very well with the current existing model of carbon isotope fractionation for coal-derived gas from the Kuqa depression, Tarim basin, China. The strong con-elation of carbon and hydrogen isotopes between theory and field data proves that it is unlikely that hydrogen isotopes will exchange with water under the gas formation condition. Using both gas carbon and hydrogen isotopes can further constrain our prediction of gas maturity, formation age and accumulation patterns for a natural gas system. Based on the carbon and hydrogen isotope fractionation model and field data, our results show the gas in the Kuqa depression was overmature in the central depression with Ro values up to 1.9–2.0% in the Kela 2 gas field and the gas maturity was much lower in the southern Front Uplift with Ro values ranging from 1.3% to 1.7%, which agree well with the distribution characteristics of the maturity of the local source rocks. However, the predicted gas maturity in the Front Uplift was relatively higher than that of the local source rocks, which probably indicates natural gases in the Front Uplift were migrated from the central depression. Our prediction demonstrates that natural gases in the Kuqa depression were formed during the last 3–5 million years and the gas formation temperature was 170–200°C, which is consistent with the burial history of the depression. According to our results, the potential accumulation pattern for the gas in the Kuqa depression is that gases were formed at depth and expelled from the Kuqa depression and migrated vertically along faults to some traps and formed giant gas fields, or migrated from north to south and accumulated in the Front Uplift or mixed with previous oil fields and formed condensate oil gas fields. 
650 4 |a Physical sciences  |x Physics  |x Matter  |x States of matter  |x Gases  |x Hydrogen  |x Hydrogen isotopes 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Rocks  |x Sedimentary rocks  |x Mudstone 
650 4 |a Physical sciences  |x Physics  |x Matter  |x States of matter  |x Gases  |x Hydrogen 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Nonmetals  |x Carbon  |x Carbon isotopes 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Extractive industries  |x Mining industries  |x Natural gas production  |x Gas fields 
650 4 |a Physical sciences  |x Physics  |x Thermodynamics  |x Thermal analysis  |x Temperature  |x Gas temperature 
650 4 |a Physical sciences  |x Physics  |x Matter  |x States of matter  |x Gases 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Classical mechanics  |x Kinetics 
650 4 |a Applied sciences  |x Engineering  |x Energy engineering  |x Fuels  |x Fossil fuels  |x Coal 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Chemical processes  |x Chemical decomposition  |x Fractionation 
655 4 |a research-article 
700 1 |a Liao, Fengrong  |e verfasserin  |4 aut 
700 1 |a Dai, Jinxing  |e verfasserin  |4 aut 
700 1 |a Zou, Caineng  |e verfasserin  |4 aut 
700 1 |a Zhu, Guangyou  |e verfasserin  |4 aut 
700 1 |a Zhang, Bin  |e verfasserin  |4 aut 
700 1 |a Liu, Quanyou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Energy Exploration & Exploitation  |d Sage Publications, Ltd.  |g 30(2012), 2, Seite 273-293  |w (DE-627)321179307  |w (DE-600)2026571-2  |x 20484054  |7 nnns 
773 1 8 |g volume:30  |g year:2012  |g number:2  |g pages:273-293 
856 4 0 |u https://www.jstor.org/stable/26161210  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2706 
912 |a GBV_ILN_2707 
912 |a GBV_ILN_2890 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2954 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 30  |j 2012  |e 2  |h 273-293