Gas hydrate resource potential and its exploration and development prospect of the Muli coalfield in the northeast Tibetan plateau

The Muli coalfield of Qinghai province is rich in gas hydrate, which is an important alternative energy in the post-petroleum era. The results of the preliminary exploration and estimation show that the amount of gas hydrate reaches approximately 300 million m3 in the coalfield and surpasses 500 bil...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Energy Exploration & Exploitation. - Sage Publications, Ltd.. - 28(2010), 3, Seite 147-157
1. Verfasser: Wang, Tong (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Energy Exploration & Exploitation
Schlagworte:Physical sciences Business Biological sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST112768881
003 DE-627
005 20240624235922.0
007 cr uuu---uuuuu
008 240126s2010 xx |||||o 00| ||eng c
035 |a (DE-627)JST112768881 
035 |a (JST)26160872 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Tong  |e verfasserin  |4 aut 
245 1 0 |a Gas hydrate resource potential and its exploration and development prospect of the Muli coalfield in the northeast Tibetan plateau 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The Muli coalfield of Qinghai province is rich in gas hydrate, which is an important alternative energy in the post-petroleum era. The results of the preliminary exploration and estimation show that the amount of gas hydrate reaches approximately 300 million m3 in the coalfield and surpasses 500 billion m3 in its surrounding regions according to the calculation method used in Messoyakha gas field. The results indicate that Qilian Mountain permafrost area is extremely abundant in gas hydrate resources. Therefore, it will be rewardful to research on how to explore and exploit its gas hydrate resources in this area. In the present paper, the characteristics of structure, fault and the coal seams in Muli coalfield were analyzed; the formation condition and the stability zone of its gas hydrate were investigated; a model of "coal-formed gas hydrate" was identified and the reserves of gas hydrate in the Muli coalfield and the potential reserves of gas hydrate in its surrounding area were estimated. 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Functional groups  |x Hydrates 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Extractive industries  |x Mining industries  |x Coal mining  |x Coalfields 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agrology  |x Soil physics  |x Soil temperature regimes  |x Frozen soils  |x Permafrost 
650 4 |a Applied sciences  |x Engineering  |x Energy engineering  |x Fuels  |x Fossil fuels  |x Coal 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Methane 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Fluid pressure  |x Water pressure 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments  |x Mud 
650 4 |a Applied sciences  |x Materials science  |x Surface science  |x Surface properties  |x Surface temperature 
650 4 |a Applied sciences  |x Materials science  |x Materials processing  |x Drilling 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Rocks  |x Sedimentary rocks  |x Clastic sedimentary rocks  |x Mudrocks  |x Siltstones 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Energy Exploration & Exploitation  |d Sage Publications, Ltd.  |g 28(2010), 3, Seite 147-157  |w (DE-627)321179307  |w (DE-600)2026571-2  |x 20484054  |7 nnns 
773 1 8 |g volume:28  |g year:2010  |g number:3  |g pages:147-157 
856 4 0 |u https://www.jstor.org/stable/26160872  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2706 
912 |a GBV_ILN_2707 
912 |a GBV_ILN_2890 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2954 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 28  |j 2010  |e 3  |h 147-157