THE PLANT ASSEMBLAGE OF CONSTRUCTED TREATMENT WETLANDS IN SOUTH FLORIDA USED FOR EVERGLADES RESTORATION

This paper documents the plant assemblage found in large constructed treatment wetlands built for Everglades restoration, the Stormwater Treatment Areas (STAs) in south Florida. Eighty vascular and macroalgae plant species were identified at marsh sites across all the STAs, while an additional 43 sp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Florida Scientist. - The Florida Academy of Sciences, Inc.. - 75(2012), 2, Seite 131-151
1. Verfasser: Chimney, Michael J. (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Florida Scientist
Schlagworte:Physical sciences Biological sciences Applied sciences Environmental studies Mathematics
LEADER 01000caa a22002652 4500
001 JST111946824
003 DE-627
005 20240624225122.0
007 cr uuu---uuuuu
008 180604s2012 xx |||||o 00| ||eng c
035 |a (DE-627)JST111946824 
035 |a (JST)24321914 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chimney, Michael J.  |e verfasserin  |4 aut 
245 1 4 |a THE PLANT ASSEMBLAGE OF CONSTRUCTED TREATMENT WETLANDS IN SOUTH FLORIDA USED FOR EVERGLADES RESTORATION 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This paper documents the plant assemblage found in large constructed treatment wetlands built for Everglades restoration, the Stormwater Treatment Areas (STAs) in south Florida. Eighty vascular and macroalgae plant species were identified at marsh sites across all the STAs, while an additional 43 species were unique to the marsh-levee ecotone in STA-1W. The STA flora was dominated by herbaceous taxa (83% of species) whose wetland status was primarily obligate, facultative wetland or facultative (collectively 77% of species). Twenty-seven percent of species were introduced non-natives. Six species were common (present in 10% or more of samples) across all the STAs: Chara sp., Hydrilla verticillata, Lemna sp., Najas guadalupensis, Sagittaria lancifolia and Typha domingensis. Only one species, T. domingensis, was common in samples from each STA. Species richness in the STAs was significantly correlated with sampling effort but not with median water depth or wetland age, although there was a weak positive trend with age. A non-parametric estimator of species richness, the Chao 2 metric, predicted a lower bound of 89 species at marsh sites. Treatment cells dominated by submersed aquatic vegetation (SAV) pooled across all the STAs were slightly more species rich than cells dominated by emergent aquatic vegetation (EAV) (64 vs. 57 species, respectively), but there was no consistent pattern in species richness between EAV and SAV cells within individual STAs. 
540 |a Copyright © Florida Academy of Sciences, Inc. 2012 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Marshes 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Hydraulic structures  |x Levees 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Marshes  |x Everglades 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation  |x Stormwater 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Highlands 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Surface geometry  |x Surface areas 
650 4 |a Applied sciences  |x Engineering  |x Civil engineering  |x Construction engineering  |x Building construction  |x Heating ventilation and cooling  |x Ventilation systems  |x Chimneys 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Florida Scientist  |d The Florida Academy of Sciences, Inc.  |g 75(2012), 2, Seite 131-151  |w (DE-627)1007219114  |w (DE-600)2913613-1  |x 00984590  |7 nnns 
773 1 8 |g volume:75  |g year:2012  |g number:2  |g pages:131-151 
856 4 0 |u https://www.jstor.org/stable/24321914  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_206 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
951 |a AR 
952 |d 75  |j 2012  |e 2  |h 131-151