Modeling of Silencers for I.C. Engine Intake and Exhaust Systems by Means of an Integrated 1D-multiD Approach

ABSTRACT This paper describes the development of a fully 1D and of a 1D-multiD integrated approach for the simulation of complex muffler configurations. The fully 1D approach aims to model the muffler recurring to an equivalent net of 1D pipes. An expansion chamber with offset inlet and outlet pipes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:SAE International Journal of Engines. - SAE International, 2009. - 1(2009), 1, Seite 466-479
1. Verfasser: Montenegro, G. (VerfasserIn)
Weitere Verfasser: Onorati, A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:SAE International Journal of Engines
Schlagworte:Applied sciences Physical sciences Business Mathematics
LEADER 01000caa a22002652 4500
001 JST110351037
003 DE-627
005 20240624203606.0
007 cr uuu---uuuuu
008 180602s2009 xx |||||o 00| ||eng c
035 |a (DE-627)JST110351037 
035 |a (JST)26308296 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Montenegro, G.  |e verfasserin  |4 aut 
245 1 0 |a Modeling of Silencers for I.C. Engine Intake and Exhaust Systems by Means of an Integrated 1D-multiD Approach 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT This paper describes the development of a fully 1D and of a 1D-multiD integrated approach for the simulation of complex muffler configurations. The fully 1D approach aims to model the muffler recurring to an equivalent net of 1D pipes. An expansion chamber with offset inlet and outlet pipes was modeled with this preocedure and the resuts compared to CFD simulations, pointing out some critical aspects in the TL prediction. The HLLC Riemann solver and its extension to the second order were implemented both in the 1D and multiD models and exploited to handle the interface between the calculation domains. The integrated 1D-multiD approach was used afterwards to predict the transmission loss of more complex geometries such as series chambers with extended inlet and outlet pipes and with flow reversals. A new procedure has been adopted to calculate the transmission loss, imposing a pressure impulse at the inlet and evaluating the response of the muffler. This method, along with the adoption of more accurate numerical schemes improved considerably the accuracy of the result and shortened the comuptational time. The results pointed out a better prediction of the coupled approach if compared to the results of the 1D simulations. Moreover, a real engine configuration has been adopted to predict the acoustic performance of the reverse chamber under realisic operating conditions, in which pressure perturbations have finite amplitude and mean flow is present. 
540 |a Copyright © 2008 SAE International 
650 4 |a Applied sciences  |x Engineering  |x Mechanical engineering  |x Machinery  |x Engines 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Inlets 
650 4 |a Applied sciences  |x Technology  |x Weapons  |x Silencers 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Vehicle components  |x Emission control systems  |x Mufflers 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Energy industry  |x Electric power industry  |x Electric power transmission  |x Transmission loss 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Wave mechanics  |x Waves 
650 4 |a Mathematics  |x Mathematical problems  |x Boundary value problems  |x Boundary conditions 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
650 4 |a Applied sciences  |x Engineering  |x Mechanical engineering  |x Machinery  |x Engines  |x Exhaust systems 
650 4 |a Applied sciences  |x Engineering  |x Electrical engineering  |x Electronic components  |x Semiconductor devices  |x Transistors  |x Field effect transistors  |x Charge flow devices 
655 4 |a research-article 
700 1 |a Onorati, A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t SAE International Journal of Engines  |d SAE International, 2009  |g 1(2009), 1, Seite 466-479  |w (DE-627)598794158  |w (DE-600)2492224-9  |x 19463944  |7 nnns 
773 1 8 |g volume:1  |g year:2009  |g number:1  |g pages:466-479 
856 4 0 |u https://www.jstor.org/stable/26308296  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
951 |a AR 
952 |d 1  |j 2009  |e 1  |h 466-479