An Assessment of CFD Applied to Steady Flow in a Planar Diffuser Upstream of an Automotive Catalyst Monolith

ABSTRACT Flow maldistribution across automotive exhaust catalysts significantly affects their conversion efficiency. Flow behaviour can be predicted using computational fluid dynamics (CFD). This study investigates the application of CFD to modelling flow in a 2D system consisting of a catalyst mono...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:SAE International Journal of Engines. - SAE International, 2009. - 7(2014), 4, Seite 1697-1704
1. Verfasser: Porter, Sophie (VerfasserIn)
Weitere Verfasser: Yamin, Ahmad Kamal Mat, Aleksandrova, Svetlana, Benjamin, Stephen, Roberts, Carol A., Saul, Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:SAE International Journal of Engines
Schlagworte:Physical sciences Applied sciences Business Mathematics
LEADER 01000caa a22002652 4500
001 JST110316924
003 DE-627
005 20240624203130.0
007 cr uuu---uuuuu
008 180602s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST110316924 
035 |a (JST)26277881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Porter, Sophie  |e verfasserin  |4 aut 
245 1 3 |a An Assessment of CFD Applied to Steady Flow in a Planar Diffuser Upstream of an Automotive Catalyst Monolith 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT Flow maldistribution across automotive exhaust catalysts significantly affects their conversion efficiency. Flow behaviour can be predicted using computational fluid dynamics (CFD). This study investigates the application of CFD to modelling flow in a 2D system consisting of a catalyst monolith downstream of a wide-angled planar diffuser presented with steady flow. Two distinct approaches, porous medium and individual channels, are used to model monoliths of length 27 mm and 100 mm. Flow predictions are compared to particle image velocimetry (PIV) measurements made in the diffuser and hot wire anemometry (HWA) data taken downstream of the monolith. Both simulations compare favourably with PIV measurements, although the models underestimate the degree of mixing in the shear layer at the periphery of the emerging jet. Tangential velocities are predicted well in the central jet region but are overestimated elsewhere, especially at the closest measured distance, 2.5 mm from the monolith. The individual channels model is found to provide a more consistently accurate velocity profile downstream of the monolith. Maximum velocities, on the centre line and at the secondary peak near to the wall, are reasonably well matched for the cases where the flow is more maldistributed. Under these conditions, a porous medium model remains attractive because of low computational demand. 
540 |a Copyright © 2014 SAE International 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Inlets 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Fluid flow  |x Flow characteristics  |x Flow velocity 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Classical mechanics  |x Kinetics  |x Linear dynamics  |x Velocity  |x Velocity distribution 
650 4 |a Applied sciences  |x Engineering  |x Electrical engineering  |x Electronic components  |x Semiconductor devices  |x Transistors  |x Field effect transistors  |x Charge flow devices 
650 4 |a Applied sciences  |x Materials science  |x Materials  |x Porous materials 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Consumer goods industries  |x Clothing industry  |x Clothing  |x Shirts  |x Sleeves 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
650 4 |a Applied sciences  |x Engineering  |x Mechanical engineering  |x Machinery  |x Engines 
650 4 |a Applied sciences  |x Research methods  |x Modeling  |x Simulations 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry 
655 4 |a research-article 
700 1 |a Yamin, Ahmad Kamal Mat  |e verfasserin  |4 aut 
700 1 |a Aleksandrova, Svetlana  |e verfasserin  |4 aut 
700 1 |a Benjamin, Stephen  |e verfasserin  |4 aut 
700 1 |a Roberts, Carol A.  |e verfasserin  |4 aut 
700 1 |a Saul, Jonathan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t SAE International Journal of Engines  |d SAE International, 2009  |g 7(2014), 4, Seite 1697-1704  |w (DE-627)598794158  |w (DE-600)2492224-9  |x 19463944  |7 nnns 
773 1 8 |g volume:7  |g year:2014  |g number:4  |g pages:1697-1704 
856 4 0 |u https://www.jstor.org/stable/26277881  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
951 |a AR 
952 |d 7  |j 2014  |e 4  |h 1697-1704