Household-level heterogeneity of water resources within common-pool resource systems

ABSTRACT. Prior work has demonstrated the ability of common property systems to sustain institutional arrangements governing natural resources over long periods of time. Much of this work has focused on irrigation systems where upstream users agree to management arrangements that distribute water re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecology and Society. - Resilience Alliance Inc.. - 22(2017), 1
1. Verfasser: McCord, Paul (VerfasserIn)
Weitere Verfasser: Dell'Angelo, Jampel, Gower, Drew, Caylor, Kelly K., Evans, Tom
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Ecology and Society
Schlagworte:coupled infrastructure systems governance Irrigation systems Kenya Biological sciences Physical sciences Economics Information science Mathematics
LEADER 01000caa a22002652 4500
001 JST110297865
003 DE-627
005 20240624202838.0
007 cr uuu---uuuuu
008 180602s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST110297865 
035 |a (JST)26270098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a McCord, Paul  |e verfasserin  |4 aut 
245 1 0 |a Household-level heterogeneity of water resources within common-pool resource systems 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT. Prior work has demonstrated the ability of common property systems to sustain institutional arrangements governing natural resources over long periods of time. Much of this work has focused on irrigation systems where upstream users agree to management arrangements that distribute water resources across both upstream and downstream users. A series of design principles have been identified that tend to lead to long-term sustained water management in these types of irrigation systems. However, this prior work has focused on the aggregate outcomes of the water system, and there has been little work evaluating the heterogeneity of water delivery within irrigation systems in developing countries. Heterogeneity of water resources within these systems has implications for livelihood outcomes because it can be indicative of a social, technological, and/or biophysical element facilitating or detracting from water delivery. We present a multilevel analysis of households nested within 25 smallholder irrigation systems in Kenya. Specifically, we examine household-level water outcomes (i.e., average flow rate and reliability of water provisioning) and the community-level and household-level drivers that affect household water outcomes. These drivers include physical infrastructure, institutional infrastructure, and biophysical variables. Much of the common-pool resource literature addresses the rule clusters responsible for natural resource outcomes, but by considering an array of both institutional and physical features and the water delivery outcomes produced at the household level, we offer new explanations for water disparities within smallholder-operated irrigation systems. We further discuss the ability of user-group members to reshape their water delivery outcomes through information exchange. 
540 |a Copyright © 2017 by the author(s) 
650 4 |a coupled infrastructure systems 
650 4 |a governance 
650 4 |a Irrigation systems 
650 4 |a Kenya 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agrology  |x Irrigation  |x Irrigation systems 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Hydrodynamics  |x Water flow 
650 4 |a Biological sciences  |x Ecology  |x Applied ecology  |x Environmental management  |x Natural resource management  |x Water management 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water resources 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water resources  |x Water supply  |x Irrigation water 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Fluid flow  |x Flow characteristics  |x Flow velocity 
650 4 |a Biological sciences  |x Ecology  |x Human ecology 
650 4 |a Economics  |x Economic disciplines  |x Consumer economics  |x Home economics  |x Household management 
650 4 |a Information science  |x Information analysis  |x Data analysis  |x Regression analysis  |x Multilevel models 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Normal distribution curve  |x Standard deviation  |x Research 
655 4 |a research-article 
700 1 |a Dell'Angelo, Jampel  |e verfasserin  |4 aut 
700 1 |a Gower, Drew  |e verfasserin  |4 aut 
700 1 |a Caylor, Kelly K.  |e verfasserin  |4 aut 
700 1 |a Evans, Tom  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecology and Society  |d Resilience Alliance Inc.  |g 22(2017), 1  |w (DE-627)68413537X  |w (DE-600)2647724-5  |x 17083087  |7 nnns 
773 1 8 |g volume:22  |g year:2017  |g number:1 
856 4 0 |u https://www.jstor.org/stable/26270098  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 22  |j 2017  |e 1