A distribution analysis of the central Maya lowlands ecoinformation network : its rises, falls, and changes

ABSTRACT. We report a study of central Maya lowland dynastic information networks, i.e., six cities’ external elite ceramic influences, and how they reflect the decision-making practices of Maya elites over 3000 years. Forest cover, i.e., Moraceae family pollen, was added to the network analysis to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecology and Society. - Resilience Alliance Inc.. - 22(2017), 1
1. Verfasser: Gunn, Joel D. (VerfasserIn)
Weitere Verfasser: Scarborough, Vernon L., Folan, William J., Isendahl, Christian, Chase, Arlen F., Sabloff, Jeremy A., Volta, Beniamino
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Ecology and Society
Schlagworte:central Maya lowlands ceramics complex-adaptive systems distribution analysis forest cover principal components analysis Physical sciences Environmental studies Social sciences Mathematics mehr... Biological sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST110297113
003 DE-627
005 20240624202831.0
007 cr uuu---uuuuu
008 180602s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST110297113 
035 |a (JST)26270061 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gunn, Joel D.  |e verfasserin  |4 aut 
245 1 2 |a A distribution analysis of the central Maya lowlands ecoinformation network  |b its rises, falls, and changes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a ABSTRACT. We report a study of central Maya lowland dynastic information networks, i.e., six cities’ external elite ceramic influences, and how they reflect the decision-making practices of Maya elites over 3000 years. Forest cover, i.e., Moraceae family pollen, was added to the network analysis to provide ecological boundary conditions, thus ecologically moderated information networks. Principal components analysis revealed three dominant patterns. First, the networking of interior cities into powerful polities in the Late Preclassic and Classic periods (400 BCE-800 CE). In a second pattern, coastal cities emerged as key entrepôts based on marine navigation (Terminal and Postclassic periods, 800-1500 CE). Climate dynamics and sustainability considerations facilitated the transition. Forest cover, a measure of ecosystem health, shows interior forests diminished as interior cities networked but rebounded as their networks declined. By contrast, coastal forests flourished with networks implying that the marine-based economy was sustainable. Third, in the Classic, the network-dominant coast, west or east, changed with interior polities’ political struggles, the critical transition occurring after 695 CE as Tikal gained dominance over the Calakmul-Caracol alliance. Beginning with the Late Preclassic about 2000 years ago, it is possible to assign names to the decision makers by referencing the growing literature on written Maya records. Although the detectable decision sequence evident in this analysis is very basic, we believe it does open possible avenues to much deeper understanding as the study proceeds into the future. The Integrated History and Future of People on Earth–Maya working group that sponsored the analysis anticipates that it will provide actionable social science intelligence for future decision making at the global scale. 
540 |a Copyright © 2017 by the author(s) 
650 4 |a central Maya lowlands 
650 4 |a ceramics 
650 4 |a complex-adaptive systems 
650 4 |a distribution analysis 
650 4 |a forest cover 
650 4 |a principal components analysis 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Environmental studies  |x Environmental economics  |x Ecological economics  |x Ecological sustainability 
650 4 |a Social sciences  |x Human geography  |x Political geography  |x Metropolitan areas  |x Cities 
650 4 |a Mathematics  |x Mathematical analysis  |x Principal components analysis 
650 4 |a Biological sciences  |x Ecology  |x Human ecology 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest cover 
650 4 |a Applied sciences  |x Materials science  |x Materials  |x Ceramic materials 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Meteorological phenomena  |x Weather  |x Weather conditions  |x Drought 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Marine ecology  |x Coastal ecology 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Coastal landforms  |x Coasts  |x Research 
655 4 |a research-article 
700 1 |a Scarborough, Vernon L.  |e verfasserin  |4 aut 
700 1 |a Folan, William J.  |e verfasserin  |4 aut 
700 1 |a Isendahl, Christian  |e verfasserin  |4 aut 
700 1 |a Chase, Arlen F.  |e verfasserin  |4 aut 
700 1 |a Sabloff, Jeremy A.  |e verfasserin  |4 aut 
700 1 |a Volta, Beniamino  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecology and Society  |d Resilience Alliance Inc.  |g 22(2017), 1  |w (DE-627)68413537X  |w (DE-600)2647724-5  |x 17083087  |7 nnns 
773 1 8 |g volume:22  |g year:2017  |g number:1 
856 4 0 |u https://www.jstor.org/stable/26270061  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 22  |j 2017  |e 1