Aerosol optical depth studies during INDOEX: Comparison of the spectral features over coastal India with the pristine southern hemispheric environment over Mauritius

Aerosol spectral optical depths, estimated using a ground-based network of multi wavelength radiometers (MWR) along the west coast of India [Trivandrum (TVM; 8.5°N, 77°E), and Minicoy (MCY; 8.3°N, 73.04°E)] and the pristine southern hemispheric environment at Mauritius (MRU; 20.26°S, 57.54°E) during...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Current Science. - Current Science Association. - 80(2001) vom: Apr., Seite 138-144
1. Verfasser: Pillai, Preetha S (VerfasserIn)
Weitere Verfasser: Jhurry, D., Moorthy, K. Krishna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:Current Science
Schlagworte:Physical sciences Applied sciences Business Environmental studies
LEADER 01000caa a22002652 4500
001 JST109057740
003 DE-627
005 20240624190633.0
007 cr uuu---uuuuu
008 180602s2001 xx |||||o 00| ||eng c
035 |a (DE-627)JST109057740 
035 |a (JST)24105145 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pillai, Preetha S  |e verfasserin  |4 aut 
245 1 0 |a Aerosol optical depth studies during INDOEX: Comparison of the spectral features over coastal India with the pristine southern hemispheric environment over Mauritius 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Aerosol spectral optical depths, estimated using a ground-based network of multi wavelength radiometers (MWR) along the west coast of India [Trivandrum (TVM; 8.5°N, 77°E), and Minicoy (MCY; 8.3°N, 73.04°E)] and the pristine southern hemispheric environment at Mauritius (MRU; 20.26°S, 57.54°E) during the period January to June 1998 along with those obtained over the Arabian Sea and Indian Ocean during the INDOEX FFP-98 cruise (SK133) of ORV Sagar Kanya, are used to study the inter-hemispheric features of aerosols. Results indicate that there is a significant hemispherical difference for aerosol spectral optical depth (AOD) at shorter wavelengths (λ ≤ 650 nm), while at the longer wavelengths (λ > 650 nm), AOD does not show any appreciable variation with location. The spectral variation of AOD at TVM and MCY (for March 1998) depicted a similar pattern with the AOD values between 0.5 and 0.6 at shorter wavelengths and between 0.2 and 0.4 at longer wavelengths. In contrast to this, the AOD at MRU are very low, lying in the range 0.1 to 0.2 in the shorter wavelengths, whereas at the longer wavelengths the AOD values are more or less comparable (in the range 0.2 to 0.4) with the northern hemispheric stations. The cruise data clearly showed that the transition occurs generally across the ITCZ. The increased AOD at shorter wavelengths in the northern hemisphere indicates higher concentration of sub-micron aerosols in these environments arising mainly due to anthropogenic activities, while the AOD at the longer wavelengths is attributed mainly to be of marine origin. In the post-cruise period, the spectral optical depths showed a gradual increase from March to June at MRU, while at TVM, the pattern followed more or less the climatological mean. By May the AOD at shorter wavelengths decreased at TVM (due to increased rainfall) and by June, the AOD at TVM are very much comparable with those seen at MRU, indicating a dominating marine aerosol influence at both these locations. The implications are discussed. 
540 |a Copyright © 2001 Current Science Association 
650 4 |a Physical sciences  |x Chemistry  |x Chemical mixtures  |x Aerosols 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Wave mechanics  |x Waves  |x Wave phenomena  |x Wavelengths 
650 4 |a Applied sciences  |x Materials science  |x Material properties  |x Optical properties  |x Optical thickness 
650 4 |a Applied sciences  |x Laboratory techniques  |x Spectroscopy  |x Electromagnetic spectrum  |x Visible spectrum 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Service industries  |x Transportation industries  |x Travel industry  |x Tourism  |x Cruises 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Watercraft  |x Ships 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation  |x Rain 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
650 4 |a Physical sciences  |x Earth sciences  |x Oceanography  |x Ocean dynamics  |x Ocean currents  |x INDIAN OCEAN EXPERIMENT 
655 4 |a research-article 
700 1 |a Jhurry, D.  |e verfasserin  |4 aut 
700 1 |a Moorthy, K. Krishna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Current Science  |d Current Science Association  |g 80(2001) vom: Apr., Seite 138-144  |w (DE-627)320574393  |w (DE-600)2016870-6  |x 00113891  |7 nnns 
773 1 8 |g volume:80  |g year:2001  |g month:04  |g pages:138-144 
856 4 0 |u https://www.jstor.org/stable/24105145  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 80  |j 2001  |c 04  |h 138-144