Influence of northeasterly trade winds on intensity of winter bloom in the Northern Arabian Sea

Chlorophyll and wind pattern retrieved from remote sensing data have been used to study biological activity in the oceanic waters of Northern Arabian Sea (NAS) during February–March 2002–05. Occurrence of algal bloom in these waters during this period was noticed with the help of ship observations i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Current Science. - Current Science Association. - 90(2006), 10, Seite 1397-1406
1. Verfasser: Dwivedi, R. M. (VerfasserIn)
Weitere Verfasser: Raman, Mini, Parab, Sushma, Matondkar, S. G. P., Nayak, Shailesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Current Science
Schlagworte:Biological sciences Physical sciences Environmental studies Business Applied sciences
LEADER 01000caa a22002652 4500
001 JST108774546
003 DE-627
005 20240624184123.0
007 cr uuu---uuuuu
008 180602s2006 xx |||||o 00| ||eng c
035 |a (DE-627)JST108774546 
035 |a (JST)24091991 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dwivedi, R. M.  |e verfasserin  |4 aut 
245 1 0 |a Influence of northeasterly trade winds on intensity of winter bloom in the Northern Arabian Sea 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Chlorophyll and wind pattern retrieved from remote sensing data have been used to study biological activity in the oceanic waters of Northern Arabian Sea (NAS) during February–March 2002–05. Occurrence of algal bloom in these waters during this period was noticed with the help of ship observations in the past. The same was detected from OCEANSAT I/OCM with time series chlorophyll images for January–March 2000. Occurrence of this bloom was later re-confirmed using OCM data in the subsequent years also. The time-series chlorophyll images established that the bloom develops every year during February–March. This period happens to coincide with the presence of northeasterly trade winds over the NAS. Two ship cruises were conducted with the help of research vessels FORV Sagar Sampada (SS-212 during 26 February–7 March 2003 and SS-222 during 21 February–11 March 2004) during this period at the bloom site. The aim was species identification of the bloom and to study various environmental parameters associated with the bloom. Two diverse situations in the context of biological activity were observed while collecting in situ data in 2003 and 2004. Distribution of the bloom was found uniform over a large area and concentration of phytoplankton was relatively higher in 2003. Compared to this, it was observed during the same period in 2004 that phytoplankton was distributed in scattered and small patches and its concentration was relatively less. Corresponding to this observation, it was noticed from the ship data that wind strength was significantly weaker and the oceanic waters were less turbulent in 2004 compared to the same in 2003. In light of this elementary observation, an attempt was made to observe variations in the wind pattern during 2003 and 2004 using QuikSCAT/Sea Winds scatterometer data. It could be established that occurrence of the bloom as well as the observed inter annual variability in chlorophyll pattern were coupled with prevailing trade winds. It was found that density of surface water increased (inversion) during this period, which could result in convective action and the observed bloom. The vertical density gradient revealed an increasing pattern with increase in wind speed. Moreover, it was observed that response of chlorophyll to acting wind force is delayed by one to two weeks. This led to an important inference that wind can be treated as a precursor to predict variations in chlorophyll pattern in the context of the observed event of the bloom. 
540 |a © 2006 Current Science Association 
650 4 |a Biological sciences  |x Biochemistry  |x Biomolecules  |x Biological pigments  |x Chlorophylls 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Classical mechanics  |x Kinetics  |x Linear dynamics  |x Velocity  |x Wind velocity 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental degradation  |x Algal blooms 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Service industries  |x Transportation industries  |x Travel industry  |x Tourism  |x Cruises 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water  |x Saltwater  |x Sea water 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Watercraft  |x Ships 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
650 4 |a Business  |x Business economics  |x Commercial production  |x Productivity 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Atmospheric physics  |x Atmospheric circulation  |x Wind  |x Trade winds  |x RESEARCH COMMUNICATIONS 
655 4 |a research-article 
700 1 |a Raman, Mini  |e verfasserin  |4 aut 
700 1 |a Parab, Sushma  |e verfasserin  |4 aut 
700 1 |a Matondkar, S. G. P.  |e verfasserin  |4 aut 
700 1 |a Nayak, Shailesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Current Science  |d Current Science Association  |g 90(2006), 10, Seite 1397-1406  |w (DE-627)320574393  |w (DE-600)2016870-6  |x 00113891  |7 nnns 
773 1 8 |g volume:90  |g year:2006  |g number:10  |g pages:1397-1406 
856 4 0 |u https://www.jstor.org/stable/24091991  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 90  |j 2006  |e 10  |h 1397-1406