Hill Slope Variations in Chlorophyll Fluorescence Indices and Leaf Traits in a Small Arctic Watershed

Physiological processes responsible for ecosystem carbon and nitrogen cycling may vary across hill slopes and be controlled by watershed hydrology and the associated nutrient transport. Mass transport of nutrients down slope and into water tracks may increase nutrient delivery to plant roots, nutrie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Arctic, Antarctic, and Alpine Research. - Taylor & Francis, Ltd., 1999. - 45(2013), 1, Seite 39-49
1. Verfasser: Griffin, Kevin L. (VerfasserIn)
Weitere Verfasser: Epstein, David J., Boelman, Natalie T.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Arctic, Antarctic, and Alpine Research
Schlagworte:Physical sciences Biological sciences
LEADER 01000caa a22002652 4500
001 JST10684654X
003 DE-627
005 20240624162913.0
007 cr uuu---uuuuu
008 180531s2013 xx |||||o 00| ||eng c
024 7 |a 10.2307/23359382  |2 doi 
035 |a (DE-627)JST10684654X 
035 |a (JST)23359382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Griffin, Kevin L.  |e verfasserin  |4 aut 
245 1 0 |a Hill Slope Variations in Chlorophyll Fluorescence Indices and Leaf Traits in a Small Arctic Watershed 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Physiological processes responsible for ecosystem carbon and nitrogen cycling may vary across hill slopes and be controlled by watershed hydrology and the associated nutrient transport. Mass transport of nutrients down slope and into water tracks may increase nutrient delivery to plant roots, nutrient uptake, and perhaps photosynthetic activity. Small arctic watersheds are commonly characterized by increased biomass, particularly of woody deciduous shrubs, both down slope and in water tracks. We ask if photosynthetic physiology varies with hill slope position and if it is correlated to observed changes in above ground biomass. Chlorophyll fluorescence surveys from six common species reveal that maximum photosynthetic electron transport decreased significantly (by as much as 85%) down slope in 4 species. Leaf nitrogen concentrations varied from 1 to 2.5% across all leaves sampled, but show little trend with hill slope position, and as a result are not well correlated with photosynthetic electron transport. We hypothesize that trace metal concentrations may have increased in the leaves of plants growing in down slope positions and that this may be responsible for the reduction in electron transport. The relationship between the measured maximum energy conversion by photosystem II and maximum electron transport rate is species specific and indicative of light adaptation in these arctic species. Increased plant growth down slope and in water tracks does not appear to be correlated to the physiological parameters measured and instead are more likely a product of increased canopy nitrogen concentrations and leaf area accumulation. 
540 |a © 2013 Regents of the University of Colorado 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Sloping terrain 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x Watersheds 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Nitrogen 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Tundras 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Rivers  |x Creeks 
650 4 |a Physical sciences  |x Physics  |x Fundamental forces  |x Electromagnetism  |x Electromagnetic radiation  |x Light  |x Luminescence  |x Fluorescence 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Tundras  |x Arctic tundra 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant biochemistry  |x Plant nutrition 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
655 4 |a research-article 
700 1 |a Epstein, David J.  |e verfasserin  |4 aut 
700 1 |a Boelman, Natalie T.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Arctic, Antarctic, and Alpine Research  |d Taylor & Francis, Ltd., 1999  |g 45(2013), 1, Seite 39-49  |w (DE-627)328216798  |w (DE-600)2045941-5  |x 19384246  |7 nnns 
773 1 8 |g volume:45  |g year:2013  |g number:1  |g pages:39-49 
856 4 0 |u https://www.jstor.org/stable/23359382  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/23359382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 45  |j 2013  |e 1  |h 39-49