Two Catastrophic Floods: Similarities and Differences in Effects on an Ozark Stream Fish Community

In December 1982 a devastating flood occurred in Piney Creek, in the rural Ozark Mountains in Izard County, Arkansas, with vertical stage rises of 2–4 m in the headwaters, 11–12 m at downstream locations, and an estimated return time of 50–100 years. Physical effects in the watershed were catastroph...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Copeia. - American Society of Ichthyologists and Herpetologists, 1913. - 2014(2014), 4, Seite 682-693
1. Verfasser: Matthews, William J. (VerfasserIn)
Weitere Verfasser: Marsh-Matthews, Edie, Adams, Ginny L., Adams, S. Reid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Copeia
Schlagworte:Physical sciences Biological sciences Mathematics Environmental studies
LEADER 01000caa a22002652 4500
001 JST104072377
003 DE-627
005 20240624131149.0
007 cr uuu---uuuuu
008 180527s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST104072377 
035 |a (JST)24637689 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Matthews, William J.  |e verfasserin  |4 aut 
245 1 0 |a Two Catastrophic Floods: Similarities and Differences in Effects on an Ozark Stream Fish Community 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In December 1982 a devastating flood occurred in Piney Creek, in the rural Ozark Mountains in Izard County, Arkansas, with vertical stage rises of 2–4 m in the headwaters, 11–12 m at downstream locations, and an estimated return time of 50–100 years. Physical effects in the watershed were catastrophic, with extreme scour and rearrangement of the stream bed, destruction of riparian forest, and deposition of huge amounts of sand from the creek in adjacent pastures or forest. In spite of the extreme nature of this winter flood, residual effects on the overall fish community of the watershed were minimal, and by eight months after the event, the community was virtually indistinguishable from that in the previous summer. In March–April 2008 flooding of equal or greater magnitude than the 1982 flood again occurred in Piney Creek. We followed effects of the spring 2008 flood on local fishes at five long-term fixed sites in the watershed, and on the fish community pooled across those sites, four months after the 2008 flood, and again in 2010 and 2012. In spite of the severity of the 2008 springtime flood, the community before and after was relatively similar qualitatively and quantitatively. But multivariate analyses of the fish community showed more change after the 2008 flood, and in a directional trajectory, than had occurred after the 1982 flood. At the five individual sites, changes in fishes after the 2008 flood were idiosyncratic, with two sites showing marked changes immediately after the flood, with only one subsequently returning toward its former structure. Fishes at all five sites showed more change in multivariate space after the 2008 than after the 1982 flood. In the summers after both floods some cyprinid and catostomid species showed sharp increases in numbers of young-of-year. Differences in the effects of the two floods on the fish community could relate to their timing, with springtime flooding having more effects on fish than the winter flood. Similarities between the two floods with respect to increased production of young-of-year could relate to the scouring of fines (silt and sand) by the floods, providing clean gravel and cobble with more interstitial spaces that could provide protection for fish eggs or larvae, and more microhabitat for food organisms used by young fishes such as micro- or macroinvertebrates. Regardless of mechanisms, much remains to be learned about the effects of extreme floods on stream fish communities, particularly in light of the potential for increased frequency of extreme events as global climate changes continue. 
540 |a © Copyright 2014 American Society of Ichthyologists and Herpetologists 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Floods 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water  |x Streams 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Fish 
650 4 |a Biological sciences  |x Ecology  |x Animal ecology  |x Animal communities 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Rivers  |x Creeks 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x Watersheds 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Fish  |x Freshwater fishes 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Graph theory  |x Network theory  |x Community structure 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Meteorological phenomena  |x Weather  |x Weather conditions  |x Drought 
655 4 |a research-article 
700 1 |a Marsh-Matthews, Edie  |e verfasserin  |4 aut 
700 1 |a Adams, Ginny L.  |e verfasserin  |4 aut 
700 1 |a Adams, S. Reid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Copeia  |d American Society of Ichthyologists and Herpetologists, 1913  |g 2014(2014), 4, Seite 682-693  |w (DE-627)495918504  |w (DE-600)2198974-6  |x 19385110  |7 nnns 
773 1 8 |g volume:2014  |g year:2014  |g number:4  |g pages:682-693 
856 4 0 |u https://www.jstor.org/stable/24637689  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 2014  |j 2014  |e 4  |h 682-693