Adaptation of a widespread epiphytic fern to simulated climate change conditions

The response of species to climate change is generally studied using ex situ manipulation of microclimate or by modeling species range shifts under simulated climate scenarios. In contrast, a reciprocal transplant experiment was used to investigate the in situ adaptive response of the elevationally...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant Ecology. - Springer Science + Business Media. - 215(2014), 8, Seite 889-897
1. Verfasser: Hsu, Rebecca C.-C. (VerfasserIn)
Weitere Verfasser: Oostermeijer, J. Gerard B., Wolf, Jan H. D.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant Ecology
Schlagworte:Physical sciences Environmental studies Biological sciences
LEADER 01000caa a22002652 4500
001 JST102250669
003 DE-627
005 20240624110903.0
007 cr uuu---uuuuu
008 180522s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST102250669 
035 |a (JST)24553776 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hsu, Rebecca C.-C.  |e verfasserin  |4 aut 
245 1 0 |a Adaptation of a widespread epiphytic fern to simulated climate change conditions 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The response of species to climate change is generally studied using ex situ manipulation of microclimate or by modeling species range shifts under simulated climate scenarios. In contrast, a reciprocal transplant experiment was used to investigate the in situ adaptive response of the elevationally widespread epiphytic fern Asplenium antiquum to simulated climate change conditions. Fern spores were collected at three elevations and germinated in a greenhouse. The sporelings (juvenile ferns) were reciprocally transplanted to each collection site. Growth and mortality rates were monitored for 2 years. Wild sporelings were monitored at two sites to assess possible transplant effects. Habitat suitability, indicated by overall growth and survival patterns, declined as elevation increased. Only the highland population showed significant adaptation to the "home" habitat, achieving the highest survival rates. Microclimate data suggest that the presumed genetic adaptation at the highland site occurred mainly in response to drought stress in winter. Based on our previous study on species distribution models, which projected an expansion in the range of A. antiquum under future climate change scenarios, the populations at the upper margins of the species' elevational range may play an important role during this expansion, given their better adaptation to the shifting marginal conditions. Our study suggests that intraspecific variation should be considered when determining the potential impact of climate change on biodiversity. 
540 |a © Springer Science+Business Media Dordrecht 2014 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Highlands 
650 4 |a Environmental studies  |x Environmental sciences  |x Climate change 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Biology  |x Biological adaptation  |x Environmental adaptation  |x Climate change adaptation 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants  |x Climbing plants  |x Epiphytes 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant physiology  |x Plant growth 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Plant adaptation 
655 4 |a research-article 
700 1 |a Oostermeijer, J. Gerard B.  |e verfasserin  |4 aut 
700 1 |a Wolf, Jan H. D.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant Ecology  |d Springer Science + Business Media  |g 215(2014), 8, Seite 889-897  |w (DE-627)271177578  |w (DE-600)1479167-5  |x 15735052  |7 nnns 
773 1 8 |g volume:215  |g year:2014  |g number:8  |g pages:889-897 
856 4 0 |u https://www.jstor.org/stable/24553776  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 215  |j 2014  |e 8  |h 889-897