Heterogeneity in recruitment and habitat patterns of valley oak (Quercus lobata Née) at the site and landscape scale in the Santa Monica Mountains, California, USA

Valley oak, Quercus lobata Née, has been a focus of conservation attention due to concerns about regeneration failure, habitat fragmentation and modification, and potential range contraction associated with climate change. A drawback of previous studies of valley oak stand structure and the regenera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant Ecology. - Springer Science + Business Media. - 214(2013), 7, Seite 929-940
1. Verfasser: Hayes, James J. (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Plant Ecology
Schlagworte:Biological sciences Physical sciences Environmental studies
LEADER 01000caa a22002652 4500
001 JST101765940
003 DE-627
005 20240624103714.0
007 cr uuu---uuuuu
008 180522s2013 xx |||||o 00| ||eng c
035 |a (DE-627)JST101765940 
035 |a (JST)23500347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hayes, James J.  |e verfasserin  |4 aut 
245 1 0 |a Heterogeneity in recruitment and habitat patterns of valley oak (Quercus lobata Née) at the site and landscape scale in the Santa Monica Mountains, California, USA 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Valley oak, Quercus lobata Née, has been a focus of conservation attention due to concerns about regeneration failure, habitat fragmentation and modification, and potential range contraction associated with climate change. A drawback of previous studies of valley oak stand structure and the regeneration problem has been their emphasis on one site or spatial and temporal scale. Generalization about valley oak dynamics from such studies is problematic because demographic parameters are not likely to be constant across sites, but heavily influenced by site-specific conditions. This study examines site-to-site variability across three locations in the Santa Monica Mountains National Recreation Area, California, USA. Variability in measures of stand structure and spatial pattern was examined across sites and within the landscape context. Estimates of expected landscape-scale evenness were derived by repeated random sampling of the data set and used as benchmarks for comparison with site-scale measures. Saplings were more abundant than expected at all three sites with sapling:adult ratios ranging from 0.5 to >1.0. Size-class structure suggested past recruitment problems at two sites, but recruitment at one site appears to have been steady for some time. Spatial distribution of adult stems at each site roughly corresponded to the estimated landscape pattern, but sapling establishment has shifted to north-to-east aspect hillsides and riparian-adjacent positions. In hilltop and swale habitats, adult valley oak are senescing without sapling recruitment. Shifting habitat-recruitment associations may lead to increasingly uneven distribution of stems across the landscape, altering landscape patterns and ecological processes. 
540 |a © 2013 Springer Science+Business Media Dordrecht 
650 4 |a Biological sciences  |x Biology  |x Developmental biology  |x Growth and development  |x Developmental stages  |x Saplings 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical aspect 
650 4 |a Environmental studies  |x Environmental sciences  |x Climate change 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Landscapes 
650 4 |a Biological sciences  |x Biology  |x Conservation biology  |x Conservation agriculture  |x Habitat conservation 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Erosional landforms  |x Valleys 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant morphology  |x Plant vegetation  |x Stems 
650 4 |a Biological sciences  |x Biology  |x Conservation biology  |x Environmental conservation 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Species 
650 4 |a Biological sciences  |x Biology  |x Conservation biology  |x Environmental conservation  |x Land conservation  |x Landscape conservation 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Plant Ecology  |d Springer Science + Business Media  |g 214(2013), 7, Seite 929-940  |w (DE-627)271177578  |w (DE-600)1479167-5  |x 15735052  |7 nnns 
773 1 8 |g volume:214  |g year:2013  |g number:7  |g pages:929-940 
856 4 0 |u http://dx.doi.org/10.1007/s11258-013-0219-5  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 214  |j 2013  |e 7  |h 929-940