Regional Assessment of Recharge Elevation of Tap Water Sources Using the Isoscape Approach

The importance of mountains as "natural water towers" has been quantified by comparing water budgets in upstream (mountain) and downstream (lowland) areas, but their importance for tap water supplies has not been assessed. Here, we propose an isoscape approach to estimate the mean recharge...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mountain Research and Development. - International Mountain Society. - 37(2017), 2, Seite 198-205
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Mountain Research and Development
Schlagworte:Tap water isotope isoscape mountain recharge elevation hydrology Japan Applied sciences Environmental studies Physical sciences mehr... Mathematics Business
LEADER 01000caa a22002652 4500
001 JST10002677X
003 DE-627
005 20240624083454.0
007 cr uuu---uuuuu
008 170725s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST10002677X 
035 |a (JST)90009007 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
245 1 0 |a Regional Assessment of Recharge Elevation of Tap Water Sources Using the Isoscape Approach 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The importance of mountains as "natural water towers" has been quantified by comparing water budgets in upstream (mountain) and downstream (lowland) areas, but their importance for tap water supplies has not been assessed. Here, we propose an isoscape approach to estimate the mean recharge elevation of tap water sources (rivers, reservoirs, springs, and wells) and apply it to a region in central Japan as a case study. Errors in the estimation of mean recharge elevation were estimated at 90–140 m. Results show that mean recharge elevations for about 90% of sources in the region are at 1000 m above sea level or higher. A little over half of the land area is above that elevation, while 98% of the population lives below it. These findings indicate that tap water disproportionally depends on recharge in mountains and is disproportionately supplied to lowland residents. Higher locations of spring water sources and longer (vertical) distances of groundwater flow for well water sources make the recharge-to-population disproportionality more remarkable. Furthermore, our results suggest that larger cities require higher natural water towers to meet greater water demand, complemented by intermunicipal water suppliers. Some low-elevation municipalities depend heavily on water recharged in mountains well outside their territories. The method proposed here helps clarify how people depend on water supplies from mountains, providing essential knowledge for integrated management of mountains and water resources. 
540 |a © 2017 Yamanaka and Yamada 
650 4 |a Tap water 
650 4 |a isotope 
650 4 |a isoscape 
650 4 |a mountain 
650 4 |a recharge elevation 
650 4 |a hydrology 
650 4 |a Japan 
650 4 |a Applied sciences  |x Food science  |x Foodstuffs  |x Food  |x Beverages  |x Non alcoholic beverages  |x Drinking water  |x Tap water 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Rivers  |x River water 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Water resources  |x Spring water 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Hydrogeology  |x Groundwater recharge 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical results  |x Statistical properties  |x Estimate reliability 
650 4 |a Business  |x Business engineering  |x Research and development 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Hydrodynamics  |x Water flow  |x Groundwater flow  |x MountainResearch  |x Systems knowledge 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Mountain Research and Development  |d International Mountain Society  |g 37(2017), 2, Seite 198-205  |w (DE-627)477530710  |w (DE-600)2173778-2  |x 19947151  |7 nnns 
773 1 8 |g volume:37  |g year:2017  |g number:2  |g pages:198-205 
856 4 0 |u https://www.jstor.org/stable/90009007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 37  |j 2017  |e 2  |h 198-205