RELATIONSHIP BETWEEN STRESS INTENSITY FACTOR AND ENERGY RELEASE RATE OF CHINESE-FIR

Compact tension specimen and double cantilever beam of Chinese-fir (Cunninghamia lanceolata) were used to measure stress intensity factor and energy release rate of opening cracks (mode-I) in tangential-longitudinal directions in crack body, respectively. The energy release rate was converted to str...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Tropical Forest Science. - Forest Research Institute Malaysia. - 29(2017), 2, Seite 129-136
1. Verfasser: Huang, T (VerfasserIn)
Weitere Verfasser: Wang, F, Shao, Z, Li, Q
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of Tropical Forest Science
Schlagworte:Biological sciences Physical sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST099993244
003 DE-627
005 20240624083228.0
007 cr uuu---uuuuu
008 240127s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST099993244 
035 |a (JST)44160930 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, T  |e verfasserin  |4 aut 
245 1 0 |a RELATIONSHIP BETWEEN STRESS INTENSITY FACTOR AND ENERGY RELEASE RATE OF CHINESE-FIR 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Compact tension specimen and double cantilever beam of Chinese-fir (Cunninghamia lanceolata) were used to measure stress intensity factor and energy release rate of opening cracks (mode-I) in tangential-longitudinal directions in crack body, respectively. The energy release rate was converted to stress intensity factor by Sih, Paris and Irwin relationship. The results showed no significant difference between the converted value of stress intensity factor and value measured by CT specimens. Thus, it is feasible to assume wood as an orthotropic elastic body and to apply the theory of fracture mechanics. 
540 |a © Forest Research Institute Malaysia 2017 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural products  |x Plant products  |x Forest products  |x Timber 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Mineralogy  |x Specimens 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Solid mechanics  |x Fracture mechanics 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Continuum mechanics  |x Deformation  |x Elasticity  |x Moduli of elasticity 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Solid mechanics  |x Fracture mechanics  |x Crack propagation 
650 4 |a Applied sciences  |x Engineering  |x Structural engineering  |x Structural analysis  |x Stress analysis  |x Stress intensity factors 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Forestry 
650 4 |a Applied sciences  |x Engineering  |x Structural engineering  |x Structural supports  |x Cantilever beams 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Solid mechanics  |x Elastic systems  |x Elastic bodies 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Tropical forests 
655 4 |a research-article 
700 1 |a Wang, F  |e verfasserin  |4 aut 
700 1 |a Shao, Z  |e verfasserin  |4 aut 
700 1 |a Li, Q  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Tropical Forest Science  |d Forest Research Institute Malaysia  |g 29(2017), 2, Seite 129-136  |w (DE-627)385613326  |w (DE-600)2142662-4  |x 25219847  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:2  |g pages:129-136 
856 4 0 |u https://www.jstor.org/stable/44160930  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 29  |j 2017  |e 2  |h 129-136