Variations in alder pollen pore numbers—a possible new correlation tool for the Neogene Kenai lowland, Alaska

Alder (Alnus: Betulaceae) pollen grains are common in coal beds of the Miocene Beluga and the Pliocene Sterling formations exposed in the Kenai lowland, Alaska. All alder pollen grains of the Beluga Formation and the lower part of the overlying Sterling Formation are dominated by 4-pored grains (42-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Palynology. - Taylor & Francis. - 34(2010), 2, Seite 180-194
1. Verfasser: Reinink-Smith, Linda M. (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Palynology
Schlagworte:Biological sciences Applied sciences Physical sciences Environmental studies
LEADER 01000caa a22002652 4500
001 JST098898884
003 DE-627
005 20240624073445.0
007 cr uuu---uuuuu
008 160121s2010 xx |||||o 00| ||eng c
035 |a (DE-627)JST098898884 
035 |a (JST)40984158 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Reinink-Smith, Linda M.  |e verfasserin  |4 aut 
245 1 0 |a Variations in alder pollen pore numbers—a possible new correlation tool for the Neogene Kenai lowland, Alaska 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Alder (Alnus: Betulaceae) pollen grains are common in coal beds of the Miocene Beluga and the Pliocene Sterling formations exposed in the Kenai lowland, Alaska. All alder pollen grains of the Beluga Formation and the lower part of the overlying Sterling Formation are dominated by 4-pored grains (42-67% of total alder), with no exceptions. There is a striking transition to a 5-pored dominance (32-67%) with an accompanying increase in 6-, 7-, and even 8-pored grains in outcrops of the Sterling Formation along the Cook Inlet shore, north of Clam Gulch and at the head of Kachemak Bay, in upper Swift Creek Canyon, and in two canyon tributaries to Fox Creek. The general zone of this transition includes a previously correlated volcanic ash and gives credence to the rock strata being synchronous in these widely separated outcrops. It should thus be possible to correlate these strata across the Kenai lowland by the alder pore numbers combined with the volcanic ash. The cause of the transition to a > 5-pored Alnus dominance in the Pliocene of the Kenai lowland can only be suggested. Using pore numbers to determine alder species is not an accurate method because pollen of different alder species may have similar percentages of pore numbers. Nevertheless, when taking into account percentages of 5-, 6-, and 7-pored grains combined with the presence or absence of polar arci, it can be suggested that a shift occurred from the 4-pore dominated subgenus Alnus, represented by Alnus incana, to the 5-pore dominated, cold-adapted subgenus Alnobetula through dispersion and hybridization of Asian species such as Alnus maximowiczii, Alnus firma, and possibly Alnus sieboldiana. The pollen of these three species contain between 2-40% circular polar arci, which are also present in high-pore-numbered grains above the transition in this study. 
540 |a Copyright © 2010 AASP - The Palynological Society 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Palynology  |x Pollen 
650 4 |a Applied sciences  |x Engineering  |x Energy engineering  |x Fuels  |x Fossil fuels  |x Coal 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mollusks  |x Clams 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Rivers  |x Creeks 
650 4 |a Biological sciences  |x Paleontology  |x Paleobiology  |x Taphonomy  |x Fossils 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments  |x Pyroclastic materials  |x Tephra 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Geological surveys 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans  |x Ocean floor  |x Submarine canyons 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Paleoclimatology 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Palynology  |d Taylor & Francis  |g 34(2010), 2, Seite 180-194  |w (DE-627)480660336  |w (DE-600)2179197-1  |x 15589188  |7 nnns 
773 1 8 |g volume:34  |g year:2010  |g number:2  |g pages:180-194 
856 4 0 |u https://www.jstor.org/stable/40984158  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_165 
912 |a GBV_ILN_170 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2036 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2098 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2926 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
912 |a GBV_ILN_4753 
951 |a AR 
952 |d 34  |j 2010  |e 2  |h 180-194