Time-varying functional network information extracted from brief instances of spontaneous brain activity

Recent functional magnetic resonance imaging studies have shown that the brain is remarkably active even in the absence of overt behavior, and this activity occurs in spatial patterns that are reproducible across subjec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 110(2013), 11, Seite 4392-4397
1. Verfasser: Liu, Xiao (VerfasserIn)
Weitere Verfasser: Duyn, Jeff H.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Health sciences Applied sciences Mathematics Physical sciences Biological sciences Information science
LEADER 01000caa a22002652 4500
001 JST098462792
003 DE-627
005 20240624070552.0
007 cr uuu---uuuuu
008 160113s2013 xx |||||o 00| ||eng c
035 |a (DE-627)JST098462792 
035 |a (JST)42583259 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiao  |e verfasserin  |4 aut 
245 1 0 |a Time-varying functional network information extracted from brief instances of spontaneous brain activity 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Recent functional magnetic resonance imaging studies have shown that the brain is remarkably active even in the absence of overt behavior, and this activity occurs in spatial patterns that are reproducible across subjects and follow the brain's established functional subdivision. Investigating the distribution of these spatial patterns is an active area of research with the goal of obtaining a better understanding of the neural networks underlying brain function. One intriguing aspect of spontaneous activity is an apparent nonstationarity, or variability of interaction between brain regions. It was recently proposed that spontaneous brain activity may be dominated by brief traces of activity, possibly originating from a neuronal avalanching phenomenon. Such traces may involve different subregions in a network at different times, potentially reflecting functionally relevant relationships that are not captured with conventional data analysis. To investigate this, we examined publicly available functional magnetic resonance imaging data with a dedicated analysis method and found indications that functional networks inferred from conventional correlation analysis may indeed be driven by activity at only a few critical time points. Subsequent analysis of the activity at these critical time points revealed multiple spatial patterns, each distinctly different from the established functional networks. The spatial distribution of these patterns suggests a potential functional relevance. 
540 |a copyright © 1993-2008 National Academy of Sciences of the United States of America 
650 4 |a Health sciences  |x Medical diagnosis  |x Diagnostic methods  |x Diagnostic imaging  |x Magnetic resonance imaging 
650 4 |a Applied sciences  |x Engineering  |x Systems engineering  |x Systems design  |x Connectivity 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Correlations 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geodesy  |x Cartography  |x Maps 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Correlations  |x Correlation analysis 
650 4 |a Information science  |x Data products  |x Datasets 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Data distribution  |x Spatial distribution 
650 4 |a Biological sciences  |x Biology  |x Neuroscience  |x Neurophysiology  |x Sleep 
650 4 |a Applied sciences  |x Engineering  |x Electrical engineering  |x Signal processing  |x Signal reflection 
655 4 |a research-article 
700 1 |a Duyn, Jeff H.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 110(2013), 11, Seite 4392-4397  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:110  |g year:2013  |g number:11  |g pages:4392-4397 
856 4 0 |u https://www.jstor.org/stable/42583259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 110  |j 2013  |e 11  |h 4392-4397