Atmospheric deposition of methanol over the Atlantic Ocean

In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 110(2013), 50, Seite 20034-20039
1. Verfasser: Yang, Mingxi (VerfasserIn)
Weitere Verfasser: Nightingale, Philip D., Beale, Rachael, Liss, Peter S., Blomquist, Byron, Fairall, Christopher
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Physical sciences Mathematics Business Applied sciences
Beschreibung
Zusammenfassung:In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models.
ISSN:10916490