Changing Surface Conditions at Kilimanjaro Indicated from Multiscale Imagery

The shrinking glacier atop Kilimanjaro has received much attention as it is one of the few remaining tropical glaciers in the world. Physical drivers ranging from changes in temperature and humidity to shifts in cloud coverage and radiation have been attributed to reducing the ice mass. Studies have...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mountain Research and Development. - International Mountain Society. - 29(2009), 1, Seite 5-13
Format: Online-Aufsatz
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Mountain Research and Development
Schlagworte:Climate change remote sensing phenological shift Kilimanjaro East Africa Environmental studies Physical sciences Biological sciences Business Social sciences
LEADER 01000caa a22002652 4500
001 JST094504075
003 DE-627
005 20240624035335.0
007 cr uuu---uuuuu
008 151230s2009 xx |||||o 00| ||en c
035 |a (DE-627)JST094504075 
035 |a (JST)mounresedeve.29.1.5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a en 
245 1 0 |a Changing Surface Conditions at Kilimanjaro Indicated from Multiscale Imagery 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The shrinking glacier atop Kilimanjaro has received much attention as it is one of the few remaining tropical glaciers in the world. Physical drivers ranging from changes in temperature and humidity to shifts in cloud coverage and radiation have been attributed to reducing the ice mass. Studies have utilized varying methods and often use point data sources that tend to be spatially and temporally poor in the region. The objective of this study was to use complementing remote sensing data sets with systematic measurements to delineate ice cap fluctuations and land surface phenology on Kilimanjaro over the past two decades. Multitemporal, fine-scale Landsat imagery (30 m) showed approximately a 70% reduction in ice coverage since 1976. High-frequency (bimonthly) image analysis conducted along a human activity–elevation ecocline showed that the entire mountain, including the subalpine and alpine regions, has undergone an increase in vegetative signal indicating a "greening up" of Kilimanjaro over the past two decades. In addition, upper elevations of Kilimanjaro have undergone a temporal shift, or lengthening, in dry season phenology on the order of one month over the past two decades. The shift in dry season timing is concordant with maximum ablation periods. Overall, this study provides insight into land surface trends at resolutions that are currently lacking in Kilimanjaro climate change analyses. 
540 |a © 2009 by the authors 
650 4 |a Climate change 
650 4 |a remote sensing 
650 4 |a phenological shift 
650 4 |a Kilimanjaro 
650 4 |a East Africa 
650 4 |a Environmental studies  |x Environmental sciences  |x Climate change 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Glaciology  |x Glaciers 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Glaciology  |x Glaciers  |x Continental glaciers  |x Ice caps 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Geologic processes  |x Glacial processes  |x Glacial retreat 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Paleoclimatology 
650 4 |a Business  |x Business engineering  |x Research and development 
650 4 |a Social sciences  |x Human geography  |x Land use 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Crops  |x Field crops  |x Fiber crops  |x Hemp 
650 4 |a Environmental studies  |x Environmental sciences  |x Climate change 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Glaciology  |x Glaciers 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Glaciology  |x Glaciers  |x Continental glaciers  |x Ice caps 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Geologic processes  |x Glacial processes  |x Glacial retreat 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Paleoclimatology 
650 4 |a Business  |x Business engineering  |x Research and development 
650 4 |a Social sciences  |x Human geography  |x Land use 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Crops  |x Field crops  |x Fiber crops  |x Hemp  |x MountainResearch  |x Systems knowledge 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Mountain Research and Development  |d International Mountain Society  |g 29(2009), 1, Seite 5-13  |w (DE-627)477530710  |w (DE-600)2173778-2  |x 19947151  |7 nnns 
773 1 8 |g volume:29  |g year:2009  |g number:1  |g pages:5-13 
856 4 0 |u https://www.jstor.org/stable/mounresedeve.29.1.5  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 29  |j 2009  |e 1  |h 5-13