Habitat complexity and management intensity positively influence fledging success in the endangered hihi (Notiomystis cincta)

Age and structure of local vegetation (habitat complexity) are commonly assumed to be indicators of habitat quality for breeding birds, but for many species these relationships are poorly understood. The hihi (stitchbird Notiomystis cincta), an endangered New Zealand cavity-nesting passerine that on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:New Zealand Journal of Ecology. - New Zealand Ecological Society. - 38(2014), 1, Seite 53-63
1. Verfasser: Makan, Troy (VerfasserIn)
Weitere Verfasser: Castro, Isabel, Robertson, Alastair W., Joy, Michael K., Low, Matthew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:New Zealand Journal of Ecology
Schlagworte:Biological sciences Behavioral sciences Physical sciences Social sciences
LEADER 01000caa a22002652 4500
001 JST093933878
003 DE-627
005 20240624031834.0
007 cr uuu---uuuuu
008 151230s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST093933878 
035 |a (JST)24060823 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Makan, Troy  |e verfasserin  |4 aut 
245 1 0 |a Habitat complexity and management intensity positively influence fledging success in the endangered hihi (Notiomystis cincta) 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Age and structure of local vegetation (habitat complexity) are commonly assumed to be indicators of habitat quality for breeding birds, but for many species these relationships are poorly understood. The hihi (stitchbird Notiomystis cincta), an endangered New Zealand cavity-nesting passerine that only survives on mammalian predator-free islands or within fenced areas, has been the focus of intensive conservation management and research. Between 1992 and 2004 we examined the fledging success of 347 nests from four island populations. Habitat quality was improved at the two scrub/regenerating sites and one of the two mature/climax sites through management using supplementary feeding, nest-box parasite control or both. At two sites (one mature, one regenerating) management was stopped during the study allowing us to measure fledgling success with and without habitat quality improvement through management. At the population level, the number of chicks fledged per nest increased as management intensity increased and habitat quality increased. The positive effect of management was greatest for populations in lower quality habitats. To assess the relationship between fledging success and local habitat variables around the nesting site we used a height-frequency vegetation survey method sensitive to changes in vertical structural complexity at the two mature/climax sites. For 36 natural nests, a cross-validated regression-tree analysis (R2 = 0.69) predicted that as habitat complexity increased, so did fledging success, which was generally higher for nests in trees with larger diameters (present in older forests). Because these habitats are free from nest predators, our results suggest that habitat age and complexity are proxies for habitat quality through effects on nestling food availability and/or nest-chamber characteristics. Our results support the current management approach of providing supplementary food to translocated hihi populations and suggest that supplementary food can be used to overcome resource deficiencies for this species in poorer quality habitats. 
540 |a Copyright © New Zealand Ecological Society (Inc.) 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest habitats 
650 4 |a Biological sciences  |x Biology  |x Conservation biology  |x Conservation agriculture  |x Habitat conservation 
650 4 |a Behavioral sciences  |x Ethology  |x Animal behavior  |x Habitat selection  |x Animal nesting  |x Bird nesting 
650 4 |a Behavioral sciences  |x Ethology  |x Animal behavior  |x Habitat selection  |x Animal nesting 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Coastal landforms  |x Coastal barriers  |x Barrier islands 
650 4 |a Social sciences  |x Food studies  |x Food economics  |x Food supply 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Habitats 
650 4 |a Biological sciences  |x Ecology  |x Wildlife ecology  |x Wildlife habitats 
650 4 |a Biological sciences  |x Biology  |x Conservation biology  |x Environmental conservation 
650 4 |a Biological sciences  |x Biology  |x Evolutionary studies  |x Evolutionary biology  |x Evolutionary genetics  |x Reproductive success 
655 4 |a research-article 
700 1 |a Castro, Isabel  |e verfasserin  |4 aut 
700 1 |a Robertson, Alastair W.  |e verfasserin  |4 aut 
700 1 |a Joy, Michael K.  |e verfasserin  |4 aut 
700 1 |a Low, Matthew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t New Zealand Journal of Ecology  |d New Zealand Ecological Society  |g 38(2014), 1, Seite 53-63  |w (DE-627)373323700  |w (DE-600)2125714-0  |x 11777788  |7 nnns 
773 1 8 |g volume:38  |g year:2014  |g number:1  |g pages:53-63 
856 4 0 |u https://www.jstor.org/stable/24060823  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 38  |j 2014  |e 1  |h 53-63