Elevated CO₂ Enhances Biological Contributions to Elevation Change in Coastal Wetlands by Offsetting Stressors Associated with Sea-Level Rise

1. Sea-level rise, one indirect consequence of increasing atmospheric CO₂, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO₂ on the capacity of marsh plants to accrete organic material and to maintain surface elevation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Ecology. - Cambridge University Press, 1913. - 97(2009), 1, Seite 67-77
1. Verfasser: Cherry, Julia A. (VerfasserIn)
Weitere Verfasser: McKee, Karen L., Grace, James B.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of Ecology
Schlagworte:brackish marsh C₃ species C₄ species elevation change elevated atmospheric CO₂ flooding stress salinity stress Schoenoplectus americanus Spartina patens structural equation modelling mehr... Physical sciences Biological sciences
LEADER 01000caa a22002652 4500
001 JST092235824
003 DE-627
005 20240624010910.0
007 cr uuu---uuuuu
008 151228s2009 xx |||||o 00| ||eng c
035 |a (DE-627)JST092235824 
035 |a (JST)20528832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cherry, Julia A.  |e verfasserin  |4 aut 
245 1 0 |a Elevated CO₂ Enhances Biological Contributions to Elevation Change in Coastal Wetlands by Offsetting Stressors Associated with Sea-Level Rise 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a 1. Sea-level rise, one indirect consequence of increasing atmospheric CO₂, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO₂ on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO₂ concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C₃ species, Schoenoplectus americanus, and a C₄ grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO₂ and sea-level rise, we used conventional ANOVA procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C₃ plant response was influenced by interactive effects between CO₂ and salinity on plant growth, not a direct CO₂ fertilization effect. Elevated CO₂ ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO₂ conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C₃ plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and mechanisms contributing to marsh elevation change, including amelioration of salt stress by elevated CO₂ and the importance of plant production and shoot-base expansion for elevation gain. Identification of biological processes contributing to elevation change is an important first step in developing comprehensive models that permit more accurate predictions of whether coastal marshes will persist with continued sea-level rise or become submerged. 
540 |a Copyright 2009 British Ecological Society 
650 4 |a brackish marsh 
650 4 |a C₃ species 
650 4 |a C₄ species 
650 4 |a elevation change 
650 4 |a elevated atmospheric CO₂ 
650 4 |a flooding stress 
650 4 |a salinity stress 
650 4 |a Schoenoplectus americanus 
650 4 |a Spartina patens 
650 4 |a structural equation modelling 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Salinity 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Marshes 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Floods 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agrology  |x Soil chemistry  |x Soil chemical properties  |x Soil salinity 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Edaphology  |x Soil ecology 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Marine ecology  |x Coastal ecology 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Wetland ecology 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Salinity 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands  |x Marshes 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Floods 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agrology  |x Soil chemistry  |x Soil chemical properties  |x Soil salinity 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Edaphology  |x Soil ecology 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Land  |x Rangelands  |x Wetlands 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Marine ecology  |x Coastal ecology 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Wetland ecology  |x Plant-Climate Interactions 
655 4 |a research-article 
700 1 |a McKee, Karen L.  |e verfasserin  |4 aut 
700 1 |a Grace, James B.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Ecology  |d Cambridge University Press, 1913  |g 97(2009), 1, Seite 67-77  |w (DE-627)311851835  |w (DE-600)2004136-6  |x 13652745  |7 nnns 
773 1 8 |g volume:97  |g year:2009  |g number:1  |g pages:67-77 
856 4 0 |u https://www.jstor.org/stable/20528832  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 97  |j 2009  |e 1  |h 67-77