Sub-Sampling Genetic Data to Estimate Black Bear Population Size: A Case Study

Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ursus. - International Association for Bear Research and Management, 1998. - 18(2007), 2, Seite 179-188
1. Verfasser: Tredick, Catherine A. (VerfasserIn)
Weitere Verfasser: Vaughan, Michael R., Stauffer, Dean F., Simek, Stephanie L., Eason, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Ursus
Schlagworte:American black bear budget constraints noninvasive genetic sampling population estimates sub-sampling Ursus americanus Social sciences Information science Biological sciences Mathematics
LEADER 01000caa a22002652 4500
001 JST087440326
003 DE-627
005 20240623202448.0
007 cr uuu---uuuuu
008 150325s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST087440326 
035 |a (JST)20204086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tredick, Catherine A.  |e verfasserin  |4 aut 
245 1 0 |a Sub-Sampling Genetic Data to Estimate Black Bear Population Size: A Case Study 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the southeastern United States to explore how reducing costs of analysis by sub-sampling affected precision and accuracy of resulting population estimates. We used several sub-sampling scenarios to create subsets of the full datasets and compared summary statistics, population estimates, and precision of estimates generated from these subsets to estimates generated from the complete datasets. Our results suggested that bias and precision of estimates improved as the proportion of total samples used increased, and heterogeneity models (e.g., $M_{h[\text{CHAO}]}$ ) were more robust to reduced sample sizes than other models (e.g., behavior models). We recommend that only high-quality samples (>5 hair follicles) be used when budgets are constrained, and efforts should be made to maximize capture and recapture rates in the field. 
540 |a Copyright 2007 International Association for Bear Research and Management 
650 4 |a American black bear 
650 4 |a budget constraints 
650 4 |a noninvasive genetic sampling 
650 4 |a population estimates 
650 4 |a sub-sampling 
650 4 |a Ursus americanus 
650 4 |a Social sciences  |x Population studies  |x Population estimates 
650 4 |a Information science  |x Data products  |x Datasets 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Bears 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Statistical theories  |x Estimation theory  |x Estimation bias 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Genotypes 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Bears  |x Black bears 
650 4 |a Social sciences  |x Population studies  |x Population characteristics  |x Population size 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical results  |x Statistical properties  |x Estimate reliability 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Inferential statistics  |x Statistical estimation  |x Estimation methods  |x Estimators 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Population genetics  |x Ecological genetics  |x Population Estimation and Trends 
655 4 |a research-article 
700 1 |a Vaughan, Michael R.  |e verfasserin  |4 aut 
700 1 |a Stauffer, Dean F.  |e verfasserin  |4 aut 
700 1 |a Simek, Stephanie L.  |e verfasserin  |4 aut 
700 1 |a Eason, Thomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ursus  |d International Association for Bear Research and Management, 1998  |g 18(2007), 2, Seite 179-188  |w (DE-627)503327328  |w (DE-600)2210269-3  |x 19385439  |7 nnns 
773 1 8 |g volume:18  |g year:2007  |g number:2  |g pages:179-188 
856 4 0 |u https://www.jstor.org/stable/20204086  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_165 
912 |a GBV_ILN_170 
912 |a GBV_ILN_187 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2036 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2098 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2926 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
912 |a GBV_ILN_4753 
951 |a AR 
952 |d 18  |j 2007  |e 2  |h 179-188