New Methods for the Problem of Collective Ruin

The problem of "collective ruin" arises in a number of different situations in operations research and is particularly well suited as a model of risk business such as an insurance company. The problem of collective ruin is formulated in terms of dynamical stochastic processes for a risk re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:SIAM Journal on Applied Mathematics. - Society for Industrial and Applied Mathematics, 1966. - 50(1990), 5, Seite 1442-1456
1. Verfasser: Peters, Craig Steven (VerfasserIn)
Weitere Verfasser: Mangel, Marc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1990
Zugriff auf das übergeordnete Werk:SIAM Journal on Applied Mathematics
Schlagworte:asymptotic approximations WKB method turning point collective ruin Philosophy Economics Mathematics Business
LEADER 01000caa a22002652 4500
001 JST081536917
003 DE-627
005 20240623142837.0
007 cr uuu---uuuuu
008 150325s1990 xx |||||o 00| ||eng c
035 |a (DE-627)JST081536917 
035 |a (JST)2101954 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 34E20  |2 MSC 
084 |a 44A10  |2 MSC 
084 |a 45J05  |2 MSC 
084 |a 60J75  |2 MSC 
084 |a 90B99  |2 MSC 
100 1 |a Peters, Craig Steven  |e verfasserin  |4 aut 
245 1 0 |a New Methods for the Problem of Collective Ruin 
264 1 |c 1990 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The problem of "collective ruin" arises in a number of different situations in operations research and is particularly well suited as a model of risk business such as an insurance company. The problem of collective ruin is formulated in terms of dynamical stochastic processes for a risk reserve Z(t). The reserve grows according to a deterministic process β(Z(t)), the insurance premiums, and is decremented according to a compound stochastic process, claims. The integral-differential-difference equation is derived for the probability of survival to time t and a number of different methods for the solution of the stationary version of the equation, which corresponds to probability of surviving forever, are described. In particular, asymptotic techniques are developed based on the WKB method and its extensions for the solution of a broad class of risk problems. This greatly extends the classical work of Feller, Cramer, and others who were only able to treat the case in which β(Z(t)) is constant. 
540 |a Copyright 1990 Society for Industrial and Applied Mathematics 
650 4 |a asymptotic approximations 
650 4 |a WKB method 
650 4 |a turning point 
650 4 |a collective ruin 
650 4 |a Philosophy  |x Metaphysics  |x Etiology  |x Determinism 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Insurance  |x Insurance expenses  |x Insurance premiums 
650 4 |a Mathematics  |x Pure mathematics  |x Calculus  |x Differential calculus  |x Differential equations 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Mathematical transformations  |x Integral transformations  |x Laplace transformation 
650 4 |a Mathematics  |x Mathematical procedures  |x Approximation 
650 4 |a Business  |x Business engineering  |x Business risks 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Service industries  |x Insurance industry  |x Insurance providers  |x Insurance companies 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Insurance  |x Insurance expenses  |x Insurance premiums  |x Risk premiums 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Coefficients 
655 4 |a research-article 
700 1 |a Mangel, Marc  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t SIAM Journal on Applied Mathematics  |d Society for Industrial and Applied Mathematics, 1966  |g 50(1990), 5, Seite 1442-1456  |w (DE-627)266884121  |w (DE-600)1468266-7  |x 00361399  |7 nnns 
773 1 8 |g volume:50  |g year:1990  |g number:5  |g pages:1442-1456 
856 4 0 |u https://www.jstor.org/stable/2101954  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 50  |j 1990  |e 5  |h 1442-1456