Determining the Underlying Fermi Surface of Strongly Correlated Superconductors

The notion of a Fermi surface (FS) is one of the most ingenious concepts developed by solid-state physicists during the past century. It plays a central role in our understanding of interacting electron systems. Extraordinary efforts have been undertaken, by both experiment and theory, to reveal the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 103(2006), 39, Seite 14298-14301
1. Verfasser: Gros, Claudius (VerfasserIn)
Weitere Verfasser: Edegger, Bernhard, Muthukumar, V. N., Anderson, P. W.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:strong correlation renormalized mean-field theory high-temperature superconductors Applied sciences Mathematics Physical sciences Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST070420270
003 DE-627
005 20240622211823.0
007 cr uuu---uuuuu
008 150325s2006 xx |||||o 00| ||eng c
035 |a (DE-627)JST070420270 
035 |a (JST)30050368 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gros, Claudius  |e verfasserin  |4 aut 
245 1 0 |a Determining the Underlying Fermi Surface of Strongly Correlated Superconductors 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The notion of a Fermi surface (FS) is one of the most ingenious concepts developed by solid-state physicists during the past century. It plays a central role in our understanding of interacting electron systems. Extraordinary efforts have been undertaken, by both experiment and theory, to reveal the FS of the high-temperature superconductors, the most prominent class of strongly correlated superconductors. Here, we discuss some of the prevalent methods used to determine the FS and show that they generally lead to erroneous results close to half-filling and at low temperatures, because of the large superconducting gap (pseudogap) below (above) the superconducting transition temperature. Our findings provide a perspective on the interplay between strong correlations and superconductivity and highlight the importance of strong coupling theories for the characterization and determination of the underlying FS in angle-resolved photoemission spectroscopy experiments. 
540 |a Copyright 2006 National Academy of Sciences of the United States of America 
650 4 |a strong correlation 
650 4 |a renormalized mean-field theory 
650 4 |a high-temperature superconductors 
650 4 |a Applied sciences  |x Materials science  |x Materials  |x Superconductors 
650 4 |a Applied sciences  |x Engineering  |x Industrial engineering  |x Manufacturing engineering  |x Manufacturing  |x Doping 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Surface geometry  |x Mathematical surfaces 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Fermi surfaces 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Emotion  |x Emotional states  |x Frustration 
650 4 |a Physical sciences  |x Physics 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Correlations 
650 4 |a Behavioral sciences  |x Anthropology  |x Applied anthropology  |x Cultural anthropology  |x Cultural institutions  |x Archives 
650 4 |a Physical sciences  |x Physics  |x Microphysics  |x Particle physics  |x Particle emission  |x Electron emission  |x Photoelectric emission 
650 4 |a Mathematics  |x Pure mathematics  |x Calculus  |x Differential calculus  |x Greens function 
650 4 |a Applied sciences  |x Materials science  |x Materials  |x Superconductors 
650 4 |a Applied sciences  |x Engineering  |x Industrial engineering  |x Manufacturing engineering  |x Manufacturing  |x Doping 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Surface geometry  |x Mathematical surfaces 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Fermi surfaces 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Emotion  |x Emotional states  |x Frustration 
650 4 |a Physical sciences  |x Physics 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Correlations 
650 4 |a Behavioral sciences  |x Anthropology  |x Applied anthropology  |x Cultural anthropology  |x Cultural institutions  |x Archives 
650 4 |a Physical sciences  |x Physics  |x Microphysics  |x Particle physics  |x Particle emission  |x Electron emission  |x Photoelectric emission 
650 4 |a Mathematics  |x Pure mathematics  |x Calculus  |x Differential calculus  |x Greens function 
655 4 |a research-article 
700 1 |a Edegger, Bernhard  |e verfasserin  |4 aut 
700 1 |a Muthukumar, V. N.  |e verfasserin  |4 aut 
700 1 |a Anderson, P. W.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 103(2006), 39, Seite 14298-14301  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:103  |g year:2006  |g number:39  |g pages:14298-14301 
856 4 0 |u https://www.jstor.org/stable/30050368  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 103  |j 2006  |e 39  |h 14298-14301