Muscarinic Acetylcholine Receptor Subtypes as Agonist-Dependent Oncogenes

We have evaluated the muscarinic acetylcholine family of G protein-coupled receptors (mAChRs) for their oncogenic potential. These receptors are preferentially expressed in postmitotic cells, transducing signals specified by their endogenous agonist, the neurotransmitter acetylcholine. Cells transfe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 88(1991), 11, Seite 4703-4707
1. Verfasser: Gutkind, J. Silvio (VerfasserIn)
Weitere Verfasser: Novotny, Elizabeth A., Brann, Mark R., Robbins, Keith C.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1991
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Cell Biology Malignant Transformation Second Messengers G Proteins Neurotransmitter Physical sciences Biological sciences Health sciences
LEADER 01000caa a22002652 4500
001 JST070206678
003 DE-627
005 20240622204632.0
007 cr uuu---uuuuu
008 150325s1991 xx |||||o 00| ||eng c
035 |a (DE-627)JST070206678 
035 |a (JST)2357121 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gutkind, J. Silvio  |e verfasserin  |4 aut 
245 1 0 |a Muscarinic Acetylcholine Receptor Subtypes as Agonist-Dependent Oncogenes 
264 1 |c 1991 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We have evaluated the muscarinic acetylcholine family of G protein-coupled receptors (mAChRs) for their oncogenic potential. These receptors are preferentially expressed in postmitotic cells, transducing signals specified by their endogenous agonist, the neurotransmitter acetylcholine. Cells transfected with individual human mAChR genes were morphologically indistinguishable from parental NIH 3T3 cells in the absence of agonist. In contrast, when cultures were supplemented with carbachol, a stable analog of acetylcholine, foci of transformation readily appeared in m1, m3, or m5 but not in m2 or m4 mAChRs transfectants. Receptor expression was verified by ligand binding and was similar for each transfected culture. Transformation was dose-dependent and required only low levels of receptor expression. In transformation-competent cells, agonist induced phosphatidylinositol hydrolysis, whereas in m2 or m4 transfectants, receptors were coupled to the inhibition of adenylyl cyclase. These findings demonstrate that mAChRs linked to phosphatidylinositol hydrolysis can act as conditional oncogenes when expressed in cells capable of proliferation. 
540 |a Copyright 1991 The National Academy of Sciences of the United States of America 
650 4 |a Cell Biology 
650 4 |a Malignant 
650 4 |a Transformation 
650 4 |a Second Messengers 
650 4 |a G Proteins 
650 4 |a Neurotransmitter 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins  |x Receptors 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Genetic research  |x Genetic engineering  |x Gene transfer techniques  |x Transfection 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x 3T3 cells  |x NIH 3T3 cells 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Chemical processes  |x Chemical decomposition  |x Hydrolysis 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Agonists 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x 3T3 cells 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x DNA 
650 4 |a Health sciences  |x Medical sciences  |x Pharmaceutics  |x Pharmaceutical preparations  |x Medications  |x Central nervous system agents  |x Psychotropics  |x Stimulants  |x Atropine 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Ligands 
650 4 |a Biological sciences  |x Biochemistry  |x Biomolecules  |x Macromolecules  |x Lipids  |x Membrane lipids  |x Phospholipids  |x Glycerophosphates  |x Phosphatidic acids  |x Glycerophospholipids  |x Phosphatidylinositols 
655 4 |a research-article 
700 1 |a Novotny, Elizabeth A.  |e verfasserin  |4 aut 
700 1 |a Brann, Mark R.  |e verfasserin  |4 aut 
700 1 |a Robbins, Keith C.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 88(1991), 11, Seite 4703-4707  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:88  |g year:1991  |g number:11  |g pages:4703-4707 
856 4 0 |u https://www.jstor.org/stable/2357121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 88  |j 1991  |e 11  |h 4703-4707