Intrahippocampal Injection of a Lentiviral Vector Expressing Nrf2 Improves Spatial Learning in a Mouse Model of Alzheimer's Disease

The amyloid hypothesis of Alzheimer's disease (AD) postulates that amyloid-β (Aβ) deposition and neurotoxicity play a causative role in AD; oxidative injury is thought to be central in the pathogenesis. An endogenous defense system against oxidative stress is induced by binding of the transcrip...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences. - 106(2009), 38, Seite 16505-16510
1. Verfasser: Kanninen, Katja (VerfasserIn)
Weitere Verfasser: Heikkinen, Riikka, Malm, Tarja, Rolova, Taisia, Kuhmonen, Susanna, Leinonen, Hanna, Ylä-Herttuala, Seppo, Tanila, Heikki, Levonen, Anna-Liisa, Koistinaho, Milla, Koistinaho, Jari, Hökfelt, Tomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:amyloid-beta astrocyte heme oxygenase-1 microglia oxidative stress Biological sciences Physical sciences Health sciences
LEADER 01000caa a22002652c 4500
001 JST070065934
003 DE-627
005 20240622202922.0
007 cr uuu---uuuuu
008 150325s2009 xx |||||o 00| ||eng c
035 |a (DE-627)JST070065934 
035 |a (JST)40485096 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kanninen, Katja  |e verfasserin  |4 aut 
245 1 0 |a Intrahippocampal Injection of a Lentiviral Vector Expressing Nrf2 Improves Spatial Learning in a Mouse Model of Alzheimer's Disease 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The amyloid hypothesis of Alzheimer's disease (AD) postulates that amyloid-β (Aβ) deposition and neurotoxicity play a causative role in AD; oxidative injury is thought to be central in the pathogenesis. An endogenous defense system against oxidative stress is induced by binding of the transcription factor nuclear factor E2-related factor 2 (Nrf2) to the antioxidant response element (ARE) enhancer sequence. The Nrf2-ARE pathway is activated in response to reactive oxygen species to trigger the simultaneous expression of numerous protective enzymes and scavengers. To exploit the Nrf2-ARE pathway therapeutically, we delivered Nrf2 bilaterally into the hippocampus of 9-month-old transgenic AD mice (APP/PS1 mice) using a lentiviral vector encoding human Nrf2. The data indicate that significant reductions in spatial learning deficits of aged APP/PS1 mice in a Morris Water Maze can be achieved by modulating levels of Nrf2 in the brain. Memory improvement in APP/PS1 mice after Nrf2 transduction shifts the balance between soluble and insoluble Aβ toward an insoluble Aβ pool without concomitant change in total brain Aβ burden. Nrf2 gene transfer is associated with a robust reduction in astrocytic but not microglial activation and induction of Nrf2 target gene heme oxygenase 1, indicating overall activation of the Nrf2-ARE pathway in hippocampal neurons 6 months after injection. Results warrant further exploration of the Nrf2-ARE pathway for treatment of AD and suggest that the Nrf2-ARE pathway may represent a potential therapeutic strategy to pursue in AD in humans, particularly in view of the multiple mechanisms by which Nrf2 can exert its protective effects. 
650 4 |a amyloid-beta 
650 4 |a astrocyte 
650 4 |a heme oxygenase-1 
650 4 |a microglia 
650 4 |a oxidative stress 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neurons 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain  |x Hippocampus 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x RNA  |x Messenger RNA 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x Physiological regulation  |x Homeostasis  |x Metabolic stress  |x Oxidative stress 
650 4 |a Health sciences  |x Medical conditions  |x Diseases  |x Nervous system diseases  |x Central nervous system diseases  |x Neurological disorders  |x Brain disorders  |x Alzheimers disease 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins  |x Amyloids 
650 4 |a Physical sciences  |x Physics  |x Microphysics  |x Molecular physics  |x Molecules  |x Antioxidants 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Primates  |x Humans 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neuroglia  |x Astrocytes 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neurons 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain  |x Hippocampus 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x RNA  |x Messenger RNA 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x Physiological regulation  |x Homeostasis  |x Metabolic stress  |x Oxidative stress 
650 4 |a Health sciences  |x Medical conditions  |x Diseases  |x Nervous system diseases  |x Central nervous system diseases  |x Neurological disorders  |x Brain disorders  |x Alzheimers disease 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins  |x Amyloids 
650 4 |a Physical sciences  |x Physics  |x Microphysics  |x Molecular physics  |x Molecules  |x Antioxidants 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Primates  |x Humans 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neuroglia  |x Astrocytes 
655 4 |a research-article 
700 1 |a Heikkinen, Riikka  |e verfasserin  |4 aut 
700 1 |a Malm, Tarja  |e verfasserin  |4 aut 
700 1 |a Rolova, Taisia  |e verfasserin  |4 aut 
700 1 |a Kuhmonen, Susanna  |e verfasserin  |4 aut 
700 1 |a Leinonen, Hanna  |e verfasserin  |4 aut 
700 1 |a Ylä-Herttuala, Seppo  |e verfasserin  |4 aut 
700 1 |a Tanila, Heikki  |e verfasserin  |4 aut 
700 1 |a Levonen, Anna-Liisa  |e verfasserin  |4 aut 
700 1 |a Koistinaho, Milla  |e verfasserin  |4 aut 
700 1 |a Koistinaho, Jari  |e verfasserin  |4 aut 
700 1 |a Hökfelt, Tomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences  |g 106(2009), 38, Seite 16505-16510  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnas 
773 1 8 |g volume:106  |g year:2009  |g number:38  |g pages:16505-16510 
856 4 0 |u https://www.jstor.org/stable/40485096  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4027 
912 |a GBV_ILN_4028 
912 |a GBV_ILN_4029 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4116 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4266 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4309 
912 |a GBV_ILN_4310 
912 |a GBV_ILN_4311 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4314 
912 |a GBV_ILN_4316 
912 |a GBV_ILN_4317 
912 |a GBV_ILN_4319 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 106  |j 2009  |e 38  |h 16505-16510