Mitogen-Activated Protein Kinase Activation Resulting from Selective Oncogene Expression in NIH 3T3 and Rat 1a Cells

Mitogen-activated protein kinases (MAPKs) are serine/threonine kinases that are rapidly activated in response to a variety of growth factors in many cell types. MAPKs are activated by phosphorylation of both tyrosine and threonine residues. They are proposed to be key integrators of growth factor re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 89(1992), 16, Seite 7355-7359
1. Verfasser: Gallego, Carme (VerfasserIn)
Weitere Verfasser: Gupta, Sunil K., Heasley, Lynn E., Qian, Nan-Xin, Johnson, Gary L.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1992
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Cell Biology Transformation Protein Kinases Oncoproteins Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST069895716
003 DE-627
005 20240622195209.0
007 cr uuu---uuuuu
008 150325s1992 xx |||||o 00| ||eng c
035 |a (DE-627)JST069895716 
035 |a (JST)2360088 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gallego, Carme  |e verfasserin  |4 aut 
245 1 0 |a Mitogen-Activated Protein Kinase Activation Resulting from Selective Oncogene Expression in NIH 3T3 and Rat 1a Cells 
264 1 |c 1992 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Mitogen-activated protein kinases (MAPKs) are serine/threonine kinases that are rapidly activated in response to a variety of growth factors in many cell types. MAPKs are activated by phosphorylation of both tyrosine and threonine residues. They are proposed to be key integrators of growth factor receptor transduction systems involving conversion of tyrosine kinase signals to serine/threonine kinase activation. We have studied the influence of specific oncogenes on the regulation of MAPK activity in NIH 3T3 and Rat 1a fibroblasts. In NIH 3T3 cells, ras or raf oncogene expression, but not gip2 oncogene expression, induces a significant constitutive MAPK activation. In contrast, in Rat 1a cells, gip2, but not ras or raf oncogene expression, induces a strong constitutive MAPK activation. The findings indicate that, in a cell type-selective manner, different oncoproteins are capable of causing the constitutive activation of MAPK. However, the magnitude of oncogene-induced MAPK activation is not directly correlated with cellular transformation in either cell type. It appears that expression of only a subset of transforming oncogenes in a specific cell type is able to alter the regulation of the MAPK activation pathway. Thus, the network of cytoplasmic serine/threonine kinases will be differentially regulated when the same oncogene is expressed in different cell types. 
540 |a Copyright 1992 The National Academy of Sciences of the United States of America 
650 4 |a Cell Biology 
650 4 |a Transformation 
650 4 |a Protein Kinases 
650 4 |a Oncoproteins 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x 3T3 cells  |x NIH 3T3 cells 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x 3T3 cells 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Molecular genetics  |x Genes  |x Dominant genes  |x Oncogenes 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cell physiology  |x Cell growth 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Molecular genetics  |x Gene expression  |x Gene expression regulation 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x DNA 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Rodents  |x Rats 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Functional group transfer  |x Phosphorylation 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x Body composition  |x Body fluids  |x Blood  |x Blood cells  |x Leukocytes  |x Mononuclear leukocytes  |x Lymphocytes  |x B lymphocytes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins  |x Membrane proteins  |x Cell surface receptors  |x Peptide receptors  |x Growth factor receptors 
655 4 |a research-article 
700 1 |a Gupta, Sunil K.  |e verfasserin  |4 aut 
700 1 |a Heasley, Lynn E.  |e verfasserin  |4 aut 
700 1 |a Qian, Nan-Xin  |e verfasserin  |4 aut 
700 1 |a Johnson, Gary L.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 89(1992), 16, Seite 7355-7359  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:89  |g year:1992  |g number:16  |g pages:7355-7359 
856 4 0 |u https://www.jstor.org/stable/2360088  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 89  |j 1992  |e 16  |h 7355-7359