Isolation of a cDNA Clone Encoding a Human Protein-Tyrosine Phosphatase with Homology to the Cytoskeletal-Associated Proteins Band 4.1, Ezrin, and Talin

The polymerase chain reaction (PCR), from primers corresponding to conserved sequences within the catalytic domains of the protein-tyrosine phosphates, was used to amplify protein-tyrosine phosphatase-related cDNAs from a HeLa cell library. After probing the same cDNA library with one of the PCR pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 88(1991), 14, Seite 5949-5953
1. Verfasser: Yang, Qing (VerfasserIn)
Weitere Verfasser: Tonks, Nicholas K.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1991
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Biochemistry Tyrosine Phosphorylation Dephosphorylation Focal Adhesion Plaques Transformation pp60src Physical sciences Biological sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST069785279
003 DE-627
005 20240622193029.0
007 cr uuu---uuuuu
008 150325s1991 xx |||||o 00| ||eng c
035 |a (DE-627)JST069785279 
035 |a (JST)2357415 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Qing  |e verfasserin  |4 aut 
245 1 0 |a Isolation of a cDNA Clone Encoding a Human Protein-Tyrosine Phosphatase with Homology to the Cytoskeletal-Associated Proteins Band 4.1, Ezrin, and Talin 
264 1 |c 1991 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The polymerase chain reaction (PCR), from primers corresponding to conserved sequences within the catalytic domains of the protein-tyrosine phosphates, was used to amplify protein-tyrosine phosphatase-related cDNAs from a HeLa cell library. After probing the same cDNA library with one of the PCR products, 10 positive clones were identified. The longest of these clones (3984 base pairs) contained 2739 base pairs of open reading frame and, after a stop codon, a 3' nontranslated segment of 1222 base pairs. A 4.3-kilobase transcript was detected by Northern blot analysis of HeLa cell poly(A)+RNA. The open reading frame predicts a protein of 913 amino acids (≈104 kDa), termed PTPH1. The sequence of PTPH1 can be described in terms of three segments. (i) The N-terminal segment displays homology to the domains in the cytoskeletal-associated proteins band 4.1, ezrin, and talin that direct their association with proteins at the interface between the plasma membrane and the cytoskeleton in structures such as focal adhesions. (ii) There is a central segment bearing putative phosphorylation sites for protein-serine/threonine kinases. (iii) A segment that is homologous to the members of the protein-tyrosine phosphatase family is located at the C terminus. The structure is discussed in the light of the potential role of PTPH1 in controlling cytoskeletal integrity and the possibility that overexpression of PTPH1 may reverse transformation induced by oncogenic protein-tyrosine kinases, such as the members of the src family. 
540 |a Copyright 1991 The National Academy of Sciences of the United States of America 
650 4 |a Biochemistry 
650 4 |a Tyrosine Phosphorylation 
650 4 |a Dephosphorylation 
650 4 |a Focal Adhesion Plaques 
650 4 |a Transformation 
650 4 |a pp60src 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Functional group transfer  |x Phosphorylation 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Cultured cells  |x Cell lines  |x Tumor cell line  |x HeLa cells 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x Body composition  |x Body fluids  |x Blood  |x Blood cells  |x Leukocytes  |x Mononuclear leukocytes  |x Lymphocytes  |x T lymphocytes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x DNA  |x Single stranded DNA  |x Complementary DNA 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cellular structures  |x Cell membranes  |x Cell membrane structures  |x Cell matrix junctions  |x Focal adhesions 
650 4 |a Applied sciences  |x Laboratory techniques  |x Nucleic acid amplification techniques  |x Polymerase chain reaction 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cellular structures  |x Cell membranes 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Amino acids 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Proteins  |x Enzymes  |x Phosphatases 
655 4 |a research-article 
700 1 |a Tonks, Nicholas K.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 88(1991), 14, Seite 5949-5953  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:88  |g year:1991  |g number:14  |g pages:5949-5953 
856 4 0 |u https://www.jstor.org/stable/2357415  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 88  |j 1991  |e 14  |h 5949-5953