Development of Input Connections in Neural Cultures

We introduce an approach for the quantitative assessment of the connectivity in neuronal cultures, based on the statistical mechanics of percolation on a graph. This allows us to monitor the development of the culture and to see the emergence of connectivity in the network. The culture becomes fully...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences of the United States of America. - National Academy of Sciences of the United States of America. - 105(2008), 37, Seite 13758-13763
1. Verfasser: Soriano, Jordi (VerfasserIn)
Weitere Verfasser: Martínez, María Rodríguez, Tlusty, Tsvi, Moses, Elisha
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Proceedings of the National Academy of Sciences of the United States of America
Schlagworte:Neural network Network connectivity Inhibition Graph theory Percolation Biological sciences Applied sciences Mathematics Physical sciences
LEADER 01000caa a22002652 4500
001 JST069648697
003 DE-627
005 20240622185704.0
007 cr uuu---uuuuu
008 150325s2008 xx |||||o 00| ||eng c
035 |a (DE-627)JST069648697 
035 |a (JST)25464124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Soriano, Jordi  |e verfasserin  |4 aut 
245 1 0 |a Development of Input Connections in Neural Cultures 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We introduce an approach for the quantitative assessment of the connectivity in neuronal cultures, based on the statistical mechanics of percolation on a graph. This allows us to monitor the development of the culture and to see the emergence of connectivity in the network. The culture becomes fully connected at a time equivalent to the expected time of birth. The spontaneous bursting activity that characterizes cultures develops in parallel with the connectivity. The average number of inputs per neuron can be quantitatively determined in units of m₀, the number of activated inputs needed to excite the neuron. For m₀ ≃ 15 we find that hippocampal neurons have on average ≈60-120 inputs, whereas cortical neurons have ≈75-150, depending on neuronal density. The ratio of excitatory to inhibitory neurons is determined by using the ${\rm GABA}_{{\rm A}}$ antagonist bicuculine. This ratio changes during development and reaches the final value at day 7-8, coinciding with the expected time of the GABA switch. For hippocampal cultures the inhibitory cells comprise ≈30% of the neurons in the culture whereas for cortical cultures they are ≈20%. Such detailed global information on the connectivity of networks in neuronal cultures is at present inaccessible by any electrophysiological or other technique. 
540 |a Copyright 2008 The National Academy of Sciences of the United States of America 
650 4 |a Neural network 
650 4 |a Network connectivity 
650 4 |a Inhibition 
650 4 |a Graph theory 
650 4 |a Percolation 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neurons 
650 4 |a Applied sciences  |x Engineering  |x Systems engineering  |x Systems design  |x Connectivity 
650 4 |a Mathematics  |x Mathematical values  |x Critical values  |x Critical points 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cellular structures  |x Cell membranes  |x Cell membrane structures  |x Intercellular junctions  |x Synapses 
650 4 |a Biological sciences  |x Biology  |x Developmental biology 
650 4 |a Physical sciences  |x Physics  |x Fundamental forces  |x Electromagnetism  |x Electricity  |x Electric potential 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain 
650 4 |a Mathematics  |x Mathematical values  |x Critical values 
650 4 |a Biological sciences  |x Biology  |x Neuroscience 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Power laws 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cells  |x Neurons 
650 4 |a Applied sciences  |x Engineering  |x Systems engineering  |x Systems design  |x Connectivity 
650 4 |a Mathematics  |x Mathematical values  |x Critical values  |x Critical points 
650 4 |a Biological sciences  |x Biology  |x Cytology  |x Cell biology  |x Cellular structures  |x Cell membranes  |x Cell membrane structures  |x Intercellular junctions  |x Synapses 
650 4 |a Biological sciences  |x Biology  |x Developmental biology 
650 4 |a Physical sciences  |x Physics  |x Fundamental forces  |x Electromagnetism  |x Electricity  |x Electric potential 
650 4 |a Biological sciences  |x Biology  |x Anatomy  |x Nervous system  |x Central nervous system  |x Brain 
650 4 |a Mathematics  |x Mathematical values  |x Critical values 
650 4 |a Biological sciences  |x Biology  |x Neuroscience 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Power laws 
655 4 |a research-article 
700 1 |a Martínez, María Rodríguez  |e verfasserin  |4 aut 
700 1 |a Tlusty, Tsvi  |e verfasserin  |4 aut 
700 1 |a Moses, Elisha  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the National Academy of Sciences of the United States of America  |d National Academy of Sciences of the United States of America  |g 105(2008), 37, Seite 13758-13763  |w (DE-627)254235379  |w (DE-600)1461794-8  |x 10916490  |7 nnns 
773 1 8 |g volume:105  |g year:2008  |g number:37  |g pages:13758-13763 
856 4 0 |u https://www.jstor.org/stable/25464124  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_168 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 105  |j 2008  |e 37  |h 13758-13763