Responses of macroinvertebrate communities to 4 years of deer exclusion in first- and second-order streams

Abstract We compared hydrological environments and macroinvertebrate communities in 1st- and 2nd-order streams between a deer-excluded catchment (EC) and a control catchment (CC) to test effects of deer-induced hillslope soil erosion and sedimentation on macroinvertebrates. Overland flow contributio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Freshwater Science. - The University of Chicago Press, 2011. - 32(2013), 2, Seite 563-575
1. Verfasser: Sakai, Masaru (VerfasserIn)
Weitere Verfasser: Natuhara, Yosihiro, Fukushima, Keitaro, Naito, Risa, Miyashita, Hideaki, Kato, Makoto, Gomi, Takashi
Format: Online-Aufsatz
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Freshwater Science
Schlagworte:denudation diversity overland flow sedimentation soil erosion stream substrate Biological sciences Physical sciences Masaru
LEADER 01000caa a22002652 4500
001 JST069447640
003 DE-627
005 20240622180843.0
007 cr uuu---uuuuu
008 150325s2013 xx |||||o 00| ||EN c
024 7 |a 10.1899/12-116.1  |2 doi 
035 |a (DE-627)JST069447640 
035 |a (JST)12-116.1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a EN 
100 1 |a Sakai, Masaru  |e verfasserin  |4 aut 
245 1 0 |a Responses of macroinvertebrate communities to 4 years of deer exclusion in first- and second-order streams 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Abstract We compared hydrological environments and macroinvertebrate communities in 1st- and 2nd-order streams between a deer-excluded catchment (EC) and a control catchment (CC) to test effects of deer-induced hillslope soil erosion and sedimentation on macroinvertebrates. Overland flow contribution to the streams was greater in CC than in EC, and substrate in 1st-order streams contained more fine sediment in CC than in EC, whereas fine sediment in substrate in 2nd-order streams was similar between catchments. Macroinvertebrate community structure in 2nd-order streams was similar between catchments, but community structure in 1st-order streams differed between catchments. In 2nd-order streams, grazer and predator taxa predominated in both catchments, whereas in 1st-order streams, a clinger taxon predominated in EC and a burrower taxon predominated in CC. Diversity of macroinvertebrates in 1st-order streams was 1.14× higher in EC than in CC. We suggest that effects of deer on macroinvertebrates were less apparent in 2nd- than in 1st-order streams because fine sediments did not accumulate in 2nd-order streams exposed to deer browsing. Our results suggest that effects of sediment addition caused by deer browsing depends on the hydrogeomorphic properties of headwater streams. 
540 |a © 2013 by The Society for Freshwater Science 
650 4 |a denudation 
650 4 |a diversity 
650 4 |a overland flow 
650 4 |a sedimentation 
650 4 |a soil erosion 
650 4 |a stream substrate 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Invertebrates  |x Macroinvertebrates 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water  |x Streams 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x Watersheds 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Ungulates  |x Ruminants  |x Deer 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Taxa 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation  |x Vegetation structure  |x Plant strata  |x Vegetation canopies  |x Understory 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Periphyton 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Hydrodynamics  |x Water flow  |x Overland flow 
650 4 |a Biological sciences  |x Ecology  |x Biomass 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Invertebrates  |x Macroinvertebrates 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Petrology  |x Sedimentary petrology  |x Sediments 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water  |x Streams 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Geologic provinces  |x Structural basins  |x Watersheds 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Mammals  |x Ungulates  |x Ruminants  |x Deer 
650 4 |a Biological sciences  |x Biology  |x Biological taxonomies  |x Taxa 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation  |x Vegetation structure  |x Plant strata  |x Vegetation canopies  |x Understory 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Periphyton 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Hydrodynamics  |x Water flow  |x Overland flow 
650 4 |a Biological sciences  |x Ecology  |x Biomass 
650 4 |a Masaru 
655 4 |a research-article 
700 1 |a Natuhara, Yosihiro  |e verfasserin  |4 aut 
700 1 |a Fukushima, Keitaro  |e verfasserin  |4 aut 
700 1 |a Naito, Risa  |e verfasserin  |4 aut 
700 1 |a Miyashita, Hideaki  |e verfasserin  |4 aut 
700 1 |a Kato, Makoto  |e verfasserin  |4 aut 
700 1 |a Gomi, Takashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Freshwater Science  |d The University of Chicago Press, 2011  |g 32(2013), 2, Seite 563-575  |w (DE-627)686946898  |w (DE-600)2651496-5  |x 21619565  |7 nnns 
773 1 8 |g volume:32  |g year:2013  |g number:2  |g pages:563-575 
856 4 0 |u https://www.jstor.org/stable/10.1899/12-116.1  |3 Volltext 
856 4 0 |u https://doi.org/10.1899/12-116.1  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_206 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
951 |a AR 
952 |d 32  |j 2013  |e 2  |h 563-575