Stochastic Evolutionary Dynamics of Direct Reciprocity

Evolutionary game theory is the study of frequency-dependent selection. The success of an individual depends on the frequencies of strategies that are used in the population. We propose a new model for studying evolutionary dynamics in games with a continuous strategy space. The population size is f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings: Biological Sciences. - The Royal Society. - 277(2010), 1680, Seite 463-468
1. Verfasser: Imhof, Lorens A. (VerfasserIn)
Weitere Verfasser: Nowak, Martin A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Proceedings: Biological Sciences
Schlagworte:cooperation finite population game theory mathematical biology Prisoner's Dilemma Social sciences Behavioral sciences Mathematics Biological sciences Religion
LEADER 01000caa a22002652 4500
001 JST069285411
003 DE-627
005 20240622174313.0
007 cr uuu---uuuuu
008 150325s2010 xx |||||o 00| ||eng c
035 |a (DE-627)JST069285411 
035 |a (JST)40506141 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Imhof, Lorens A.  |e verfasserin  |4 aut 
245 1 0 |a Stochastic Evolutionary Dynamics of Direct Reciprocity 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Evolutionary game theory is the study of frequency-dependent selection. The success of an individual depends on the frequencies of strategies that are used in the population. We propose a new model for studying evolutionary dynamics in games with a continuous strategy space. The population size is finite. All members of the population use the same strategy. A mutant strategy is chosen from some distribution over the strategy space. The fixation probability of the mutant strategy in the resident population is calculated. The new mutant takes over the population with this probability. In this case, the mutant becomes the new resident. Otherwise, the existing resident remains. Then, another mutant is generated. These dynamics lead to a stationary distribution over the entire strategy space. Our new approach generalizes classical adaptive dynamics in three ways: (i) the population size is finite; (ii) mutants can be drawn non-locally and (iii) the dynamics are stochastic. We explore reactive strategies in the repeated Prisoner's Dilemma. We perform ' knock-out experiments' to study how various strategies affect the evolution of cooperation. We find that 'tit-for-tat' is a weak catalyst for the emergence of cooperation, while 'always cooperate' is a strong catalyst for the emergence of defection. Our analysis leads to a new understanding of the optimal level of forgiveness that is needed for the evolution of cooperation under direct reciprocity. 
540 |a Copyright 2010 The Royal Society 
650 4 |a cooperation 
650 4 |a finite population 
650 4 |a game theory 
650 4 |a mathematical biology 
650 4 |a Prisoner's Dilemma 
650 4 |a Social sciences  |x Population studies  |x Population characteristics  |x Population size 
650 4 |a Behavioral sciences  |x Sociology  |x Human societies  |x Social dynamics  |x Social change  |x Social evolution 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory 
650 4 |a Social sciences  |x Population studies  |x Population dynamics 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory  |x Game theory games  |x Economic games  |x Evolutionary games 
650 4 |a Mathematics 
650 4 |a Social sciences  |x Communications  |x Negotiation  |x Negotiation strategies  |x Prisoners dilemma 
650 4 |a Biological sciences  |x Biology  |x Evolutionary studies  |x Evolutionary biology  |x Evolutionary theories 
650 4 |a Religion  |x Spiritual belief systems  |x Christianity  |x Christian philosophy  |x Christian justification  |x Forgiveness 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Stochastic models 
650 4 |a Social sciences  |x Population studies  |x Population characteristics  |x Population size 
650 4 |a Behavioral sciences  |x Sociology  |x Human societies  |x Social dynamics  |x Social change  |x Social evolution 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory 
650 4 |a Social sciences  |x Population studies  |x Population dynamics 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory  |x Game theory games  |x Economic games  |x Evolutionary games 
650 4 |a Mathematics 
650 4 |a Social sciences  |x Communications  |x Negotiation  |x Negotiation strategies  |x Prisoners dilemma 
650 4 |a Biological sciences  |x Biology  |x Evolutionary studies  |x Evolutionary biology  |x Evolutionary theories 
650 4 |a Religion  |x Spiritual belief systems  |x Christianity  |x Christian philosophy  |x Christian justification  |x Forgiveness 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Stochastic models 
655 4 |a research-article 
700 1 |a Nowak, Martin A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings: Biological Sciences  |d The Royal Society  |g 277(2010), 1680, Seite 463-468  |w (DE-627)JST069249288  |x 09628452  |7 nnns 
773 1 8 |g volume:277  |g year:2010  |g number:1680  |g pages:463-468 
856 4 0 |u https://www.jstor.org/stable/40506141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
951 |a AR 
952 |d 277  |j 2010  |e 1680  |h 463-468