|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST068807619 |
003 |
DE-627 |
005 |
20240622165744.0 |
007 |
cr uuu---uuuuu |
008 |
150325s1996 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST068807619
|
035 |
|
|
|a (JST)2161480
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
084 |
|
|
|a 43A15
|2 MSC
|
084 |
|
|
|a 28B05
|2 MSC
|
084 |
|
|
|a 39A05
|2 MSC
|
100 |
1 |
|
|a Basit, Bolis
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Differences of Vector-Valued Functions on Topological Groups
|
264 |
|
1 |
|c 1996
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Let G be a locally compact group equipped with right Haar measure. The right differences Δhφof functions φ on G are defined by Δhφ(t) = φ(th) - φ(t) for h, t ∈ G. Let φ ∈ L∞(G) and suppose Δhφ∈ Lp(G) for some $1 \leq p < \infty$ and all h ∈ G. We prove that |Δhφ|pis a right uniformly continuous function of h. If G is abelian and the Beurling spectrum sp(φ) does not contain the unit of the dual group Ĝ, then we show φ ∈ Lp(G). These results have analogues for functions φ: G → X, where X is a separable or reflexive Banach space. Finally, we apply our methods to vector-valued right uniformly continuous differences and to absolutely continuous elements of left Banach G-modules.
|
540 |
|
|
|a Copyright 1996 American Mathematical Society
|
650 |
|
4 |
|a Differences
|
650 |
|
4 |
|a weight functions
|
650 |
|
4 |
|a spectrum
|
650 |
|
4 |
|a right uniform continuity
|
650 |
|
4 |
|a G-modules
|
650 |
|
4 |
|a weak continuity
|
650 |
|
4 |
|a absolutely continuous elements
|
650 |
|
4 |
|a Mathematics
|x Applied mathematics
|x Statistics
|x Applied statistics
|x Statistical physics
|x Dimensional analysis
|x Dimensionality
|x Abstract spaces
|x Topological spaces
|x Metric spaces
|x Separable spaces
|x Banach space
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Topology
|x Topological theorems
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical functions
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical functions
|x Continuous functions
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical functions
|x Weighting functions
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Algebra
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical theorems
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Topology
|
650 |
|
4 |
|a Mathematics
|x Mathematical analysis
|x Mathematical continuity
|
655 |
|
4 |
|a research-article
|
700 |
1 |
|
|a Pryde, A. J.
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Proceedings of the American Mathematical Society
|d American Mathematical Society, 1950
|g 124(1996), 7, Seite 1969-1975
|w (DE-627)270129839
|w (DE-600)1476739-9
|x 10886826
|7 nnns
|
773 |
1 |
8 |
|g volume:124
|g year:1996
|g number:7
|g pages:1969-1975
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/2161480
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2932
|
912 |
|
|
|a GBV_ILN_2947
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4367
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 124
|j 1996
|e 7
|h 1969-1975
|