A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice

Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isola...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant Physiology. - American Society of Plant Biologists, 1926. - 125(2001), 2, Seite 955-968
1. Verfasser: Van Der Straeten, Dominique (VerfasserIn)
Weitere Verfasser: Prinsen, Els, Van Montagu, Marc C.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:Plant Physiology
Schlagworte:Biological sciences Physical sciences Health sciences
LEADER 01000caa a22002652 4500
001 JST066563399
003 DE-627
005 20240622141240.0
007 cr uuu---uuuuu
008 150325s2001 xx |||||o 00| ||eng c
035 |a (DE-627)JST066563399 
035 |a (JST)4279720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Van Der Straeten, Dominique  |e verfasserin  |4 aut 
245 1 2 |a A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isolated from cv IR36, a lowland rice variety. Expression was induced upon short- and long-term submergence in cv IR36 and in cv Plai Ngam, a Thai deepwater rice variety. Under hypoxic conditions, abscisic acid and gibberellin had a reciprocal opposite effect on the activity of OS-ACS5. Gibberellin up-regulated and abscisic acid down-regulated OS-ACS5 mRNA accumulation. Growth experiments indicated that lowland rice responded to submergence with a burst of growth early on, but lacked the ability to sustain elongation growth. Sustained growth, characteristic for deepwater rice, was correlated with a prolonged induction of OS-ACS5. In addition, a more pronounced capacity to convert ACC to ethylene, a limited ACC conjugation, and a high level of endogenous $\text{gibberellin}_{20}$ were characteristic for the deepwater variety. An elevated level of OS-ACS5 messenger was found in cv IR36 plants treated with exogenous ACC. This observation was concomitant with an increase in the capacity of converting ACC to ethylene and in elongation growth, and resulted in prolonged survival. In conclusion, OS-ACS5 is involved in the rapid elongation growth of deepwater rice by contributing to the initial and long-term increase in ethylene levels. Our data also suggest that ACC limits survival of submerged lowland rice seedlings. 
540 |a Copyright 2001 American Society of Plant Physiologists 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Crops  |x Field crops  |x Food crops  |x Grains  |x Cereal grains  |x Rice 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Biology  |x Developmental biology  |x Growth and development  |x Developmental stages  |x Seedlings 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x RNA  |x Messenger RNA 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x DNA 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Acids  |x Nucleic acids  |x RNA 
650 4 |a Health sciences  |x Medical conditions  |x Symptoms  |x Physical symptoms  |x Respiratory symptoms  |x Hypoxia 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Genomics 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant physiology  |x Plant growth  |x Environmental Stress and Adaptation 
655 4 |a research-article 
700 1 |a Prinsen, Els  |e verfasserin  |4 aut 
700 1 |a Van Montagu, Marc C.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant Physiology  |d American Society of Plant Biologists, 1926  |g 125(2001), 2, Seite 955-968  |w (DE-627)314092579  |w (DE-600)2004346-6  |x 15322548  |7 nnns 
773 1 8 |g volume:125  |g year:2001  |g number:2  |g pages:955-968 
856 4 0 |u https://www.jstor.org/stable/4279720  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 125  |j 2001  |e 2  |h 955-968