The Application of Machine Learning to Structural Health Monitoring

In broad terms, there are two approaches to damage identification. Model-driven methods establish a high-fidelity physical model of the structure, usually by finite element analysis, and then establish a comparison metric between the model and the measured data from the real structure. If the model...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Philosophical Transactions: Mathematical, Physical and Engineering Sciences. - The Royal Society. - 365(2007), 1851, Seite 515-537
1. Verfasser: Worden, Keith (VerfasserIn)
Weitere Verfasser: Manson, Graeme
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Philosophical Transactions: Mathematical, Physical and Engineering Sciences
Schlagworte:Structural health monitoring Machine learning Pattern recognition Neural networks Statistical learning theory Support vector machines Applied sciences Physical sciences Mathematics Behavioral sciences
LEADER 01000caa a22002652 4500
001 JST065990331
003 DE-627
005 20240622130139.0
007 cr uuu---uuuuu
008 150325s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST065990331 
035 |a (JST)25190452 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Worden, Keith  |e verfasserin  |4 aut 
245 1 4 |a The Application of Machine Learning to Structural Health Monitoring 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In broad terms, there are two approaches to damage identification. Model-driven methods establish a high-fidelity physical model of the structure, usually by finite element analysis, and then establish a comparison metric between the model and the measured data from the real structure. If the model is for a system or structure in normal (i.e. undamaged) condition, any departures indicate that the structure has deviated from normal condition and damage is inferred. Data-driven approaches also establish a model, but this is usually a statistical representation of the system, e.g. a probability density function of the normal condition. Departures from normality are then signalled by measured data appearing in regions of very low density. The algorithms that have been developed over the years for data-driven approaches are mainly drawn from the discipline of pattern recognition, or more broadly, machine learning. The object of this paper is to illustrate the utility of the data-driven approach to damage identification by means of a number of case studies. 
540 |a Copyright 2007 The Royal Society 
650 4 |a Structural health monitoring 
650 4 |a Machine learning 
650 4 |a Pattern recognition 
650 4 |a Neural networks 
650 4 |a Statistical learning theory 
650 4 |a Support vector machines 
650 4 |a Applied sciences  |x Computer science  |x Artificial intelligence  |x Machine learning  |x Computer pattern recognition  |x Novelty detection 
650 4 |a Applied sciences  |x Computer science  |x Artificial intelligence  |x Machine learning 
650 4 |a Applied sciences  |x Materials science  |x Physical damage  |x Fire damage 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Continuum mechanics  |x Deformation  |x Plasticity  |x Yield point 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Outliers 
650 4 |a Applied sciences  |x Engineering  |x Structural engineering  |x Structural analysis  |x Structural health monitoring 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Non Euclidean geometry  |x Hyperplanes 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Cognitive processes  |x Learning  |x Learning theory 
650 4 |a Applied sciences  |x Materials science  |x Physical damage  |x Damage assessment 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Vector analysis  |x Mathematical vectors 
650 4 |a Applied sciences  |x Computer science  |x Artificial intelligence  |x Machine learning  |x Computer pattern recognition  |x Novelty detection 
650 4 |a Applied sciences  |x Computer science  |x Artificial intelligence  |x Machine learning 
650 4 |a Applied sciences  |x Materials science  |x Physical damage  |x Fire damage 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Continuum mechanics  |x Deformation  |x Plasticity  |x Yield point 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Outliers 
650 4 |a Applied sciences  |x Engineering  |x Structural engineering  |x Structural analysis  |x Structural health monitoring 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Non Euclidean geometry  |x Hyperplanes 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Cognitive processes  |x Learning  |x Learning theory 
650 4 |a Applied sciences  |x Materials science  |x Physical damage  |x Damage assessment 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Vector analysis  |x Mathematical vectors 
655 4 |a research-article 
700 1 |a Manson, Graeme  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Philosophical Transactions: Mathematical, Physical and Engineering Sciences  |d The Royal Society  |g 365(2007), 1851, Seite 515-537  |w (DE-627)254635296  |w (DE-600)1462626-3  |x 1364503X  |7 nnns 
773 1 8 |g volume:365  |g year:2007  |g number:1851  |g pages:515-537 
856 4 0 |u https://www.jstor.org/stable/25190452  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 365  |j 2007  |e 1851  |h 515-537