Compensating for Failures with Flexible Servers

We consider the problem of maximizing capacity in a queueing network with flexible servers, where the classes and servers are subject to failure. We assume that the interarrival and service times are independent and identically distributed, that routing is probabilistic, and that the failure state o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Operations Research. - Institute for Operations Research and the Management Sciences, 1956. - 55(2007), 4, Seite 753-768
1. Verfasser: Andradóttir, Sigrún (VerfasserIn)
Weitere Verfasser: Ayhan, Hayriye, Down, Douglas G.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Operations Research
Schlagworte:Queues: networks, optimization Manufacturing: performance, productivity Production/scheduling: flexible manufacturing, line balancing Stochastic Models Applied sciences Behavioral sciences Mathematics Business Information science
LEADER 01000caa a22002652 4500
001 JST063704064
003 DE-627
005 20240622102656.0
007 cr uuu---uuuuu
008 150325s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST063704064 
035 |a (JST)25147116 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Andradóttir, Sigrún  |e verfasserin  |4 aut 
245 1 0 |a Compensating for Failures with Flexible Servers 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We consider the problem of maximizing capacity in a queueing network with flexible servers, where the classes and servers are subject to failure. We assume that the interarrival and service times are independent and identically distributed, that routing is probabilistic, and that the failure state of the system can be described by a Markov process that is independent of the other system dynamics. We find that the maximal capacity is tightly bounded by the solution of a linear programming problem and that the solution of this problem can be used to construct timed, generalized round-robin policies that approach the maximal capacity arbitrarily closely. We then give a series of structural results for our policies, including identifying when server flexibility can completely compensate for failures and when the implementation of our policies can be simplified. We conclude with a numerical example that illustrates some of the developed insights. 
540 |a Copyright 2007 INFORMS 
650 4 |a Queues: networks, optimization 
650 4 |a Manufacturing: performance, productivity 
650 4 |a Production/scheduling: flexible manufacturing, line balancing 
650 4 |a Stochastic Models 
650 4 |a Applied sciences  |x Computer science  |x Computer engineering  |x Computer networking  |x Network servers 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Decision theory  |x Operations research  |x Queuing theory  |x Queueing networks 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Markov processes 
650 4 |a Mathematics  |x Mathematical procedures  |x Mathematical optimization  |x Optimal solutions 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production resources  |x Resource management  |x Time management  |x Scheduling 
650 4 |a Information science  |x Data products  |x Databases 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production engineering  |x Industrial production  |x Mass production  |x Production automation  |x Assembly production  |x Assembly lines 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Stochastic models 
650 4 |a Applied sciences  |x Engineering  |x Mechanical engineering  |x Machinery 
650 4 |a Business  |x Accountancy  |x Financial accounting  |x Business expenses  |x Variable costs  |x Carrying costs 
650 4 |a Applied sciences  |x Computer science  |x Computer engineering  |x Computer networking  |x Network servers 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Decision theory  |x Operations research  |x Queuing theory  |x Queueing networks 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Markov processes 
650 4 |a Mathematics  |x Mathematical procedures  |x Mathematical optimization  |x Optimal solutions 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production resources  |x Resource management  |x Time management  |x Scheduling 
650 4 |a Information science  |x Data products  |x Databases 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production engineering  |x Industrial production  |x Mass production  |x Production automation  |x Assembly production  |x Assembly lines 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Stochastic models 
650 4 |a Applied sciences  |x Engineering  |x Mechanical engineering  |x Machinery 
650 4 |a Business  |x Accountancy  |x Financial accounting  |x Business expenses  |x Variable costs  |x Carrying costs 
655 4 |a research-article 
700 1 |a Ayhan, Hayriye  |e verfasserin  |4 aut 
700 1 |a Down, Douglas G.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Operations Research  |d Institute for Operations Research and the Management Sciences, 1956  |g 55(2007), 4, Seite 753-768  |w (DE-627)320595005  |w (DE-600)2019440-7  |x 15265463  |7 nnns 
773 1 8 |g volume:55  |g year:2007  |g number:4  |g pages:753-768 
856 4 0 |u https://www.jstor.org/stable/25147116  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_152 
912 |a GBV_ILN_187 
912 |a GBV_ILN_224 
912 |a GBV_ILN_252 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2935 
912 |a GBV_ILN_2940 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 55  |j 2007  |e 4  |h 753-768