Comparison of Wood Decay among Diverse Lignicolous Fungi

In decay tests with 98 isolates (78 species) of lignicolous fungi followed by chemical and anatomical analyses, the validity of the generally accepted, major decay types (white, brown, and soft rot) was confirmed, and no new major types proposed. We could distinguish soft rot from other decay types...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mycologia. - Mycological Society of America, 1909. - 89(1997), 2, Seite 199-219
1. Verfasser: Worrall, James J. (VerfasserIn)
Weitere Verfasser: Anagnost, Susan E., Zabel, Robert A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:Mycologia
Schlagworte:Agaricales Aphyllophorales Auriculariales Brown rot Dacrymycetales Exidiaceae Phylogeny Soft rot White rot Xylariales mehr... Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST061650536
003 DE-627
005 20240622075123.0
007 cr uuu---uuuuu
008 150325s1997 xx |||||o 00| ||eng c
024 7 |a 10.2307/3761073  |2 doi 
035 |a (DE-627)JST061650536 
035 |a (JST)3761073 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Worrall, James J.  |e verfasserin  |4 aut 
245 1 0 |a Comparison of Wood Decay among Diverse Lignicolous Fungi 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In decay tests with 98 isolates (78 species) of lignicolous fungi followed by chemical and anatomical analyses, the validity of the generally accepted, major decay types (white, brown, and soft rot) was confirmed, and no new major types proposed. We could distinguish soft rot from other decay types based on anatomical and chemical criteria, without reliance on cavities or recourse to taxonomy of causal agents. Chemically, soft rot of birch could be distinguished from white rot by lower Klason lignin loss, and from brown rot by much lower alkali solubility. Anatomically, erosion of birch fiber walls in soft rot was distinguished from that in white rot by the angular erosion channels. V-shaped notches and diamond-shaped, eroded pit apertures that predominated in the former and their rounded forms in the latter. Substantial decay was caused by fungi representing eight orders in addition to the Aphyllophorales. Members of the Exidiaceae generally caused low weight losses and anatomical and chemical patterns of degradation characteristic of white rot. Isolates of Auricularia auricula-judae also caused a white rot, with high weight losses and unusual, branching microcavities that were oriented longitudinally in the S2 cell-wall layer. Ten species of the Dacrymycetales caused a brown rot like that caused by some Aphyllophorales; most caused high weight losses. Among white-rot fungi on birch, a relationship was observed between strongly selective delignification and strongly selective utilization of mannose. Among brown-rot fungi on birch, the top two polyose sugars (not including glucose) in order of selectivity were galactose>mannose; among soft-rotters they were arabinose>xylose. On pine, distinctions were not so clear, but some differing trends were evident. Previously unreported selective delignifiers were found in the Auriculariales, Agaricales, and in two orders of gasteromycetes. Selective delignification was most pronounced at low weight losses. Certain decay features similar to those in the Ascomycota were found in the Auriculariales, consistent with hypotheses that place that order near the phylogenetic root of Basidiomycota. A sequence of origins of decay types is proposed. 
540 |a Copyright 1997 The New York Botanical Garden 
650 4 |a Agaricales 
650 4 |a Aphyllophorales 
650 4 |a Auriculariales 
650 4 |a Brown rot 
650 4 |a Dacrymycetales 
650 4 |a Exidiaceae 
650 4 |a Phylogeny 
650 4 |a Soft rot 
650 4 |a White rot 
650 4 |a Xylariales 
650 4 |a Biological sciences  |x Biology  |x Physiology  |x Body composition  |x Body weight  |x Weight loss 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Chemicals  |x Polymers  |x Biopolymers  |x Lignin 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi  |x Decay fungi  |x White rot fungi 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi  |x Decay fungi  |x Brown rot fungi 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi  |x Ascomycota 
650 4 |a Biological sciences  |x Biochemistry  |x Biomolecules  |x Macromolecules  |x Carbohydrates  |x Sugars 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi  |x Basidiomycota 
650 4 |a Biological sciences  |x Biology  |x Mycology  |x Fungi  |x Decay fungi  |x Soft rot fungi 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural products  |x Plant products  |x Forest products  |x Timber  |x Ecology 
655 4 |a research-article 
700 1 |a Anagnost, Susan E.  |e verfasserin  |4 aut 
700 1 |a Zabel, Robert A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Mycologia  |d Mycological Society of America, 1909  |g 89(1997), 2, Seite 199-219  |w (DE-627)345857844  |w (DE-600)2076341-4  |x 15572536  |7 nnns 
773 1 8 |g volume:89  |g year:1997  |g number:2  |g pages:199-219 
856 4 0 |u https://www.jstor.org/stable/3761073  |3 Volltext 
856 4 0 |u https://doi.org/10.2307/3761073  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_224 
912 |a GBV_ILN_285 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 89  |j 1997  |e 2  |h 199-219