Some Stochastic Bounds for Dams and Queues

Let X = {X(t), t ≥ 0} be a process of the form X(t) = Z(t) - ct, where c is a positive constant and Z is an infinitely divisible, nondecreasing pure jump process. Assuming E[X(t)] < 0, let U be the d.f. of M = sup X(t). As is well known, U is the contents distribution of a dam with input Z and re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mathematics of Operations Research. - Institute for Operations Research and the Management Sciences. - 2(1977), 1, Seite 54-63
1. Verfasser: Harrison, J. Michael (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1977
Zugriff auf das übergeordnete Werk:Mathematics of Operations Research
Schlagworte:Brownian motion Collective risk theory Dam Infinitely divisible process M/G/1 queue Maxima Second-order stochastic dominance Stochastic dominance Storage process Mathematics mehr... Physical sciences Applied sciences Philosophy Economics
LEADER 01000caa a22002652 4500
001 JST056869770
003 DE-627
005 20240622025737.0
007 cr uuu---uuuuu
008 150324s1977 xx |||||o 00| ||eng c
035 |a (DE-627)JST056869770 
035 |a (JST)3689124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 60K25  |2 MSC 
100 1 |a Harrison, J. Michael  |e verfasserin  |4 aut 
245 1 0 |a Some Stochastic Bounds for Dams and Queues 
264 1 |c 1977 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Let X = {X(t), t ≥ 0} be a process of the form X(t) = Z(t) - ct, where c is a positive constant and Z is an infinitely divisible, nondecreasing pure jump process. Assuming E[X(t)] < 0, let U be the d.f. of M = sup X(t). As is well known, U is the contents distribution of a dam with input Z and release rate c. If Z is compound Poisson, one can alternately view U as the waiting time distribution for an M/G/1 queue or 1 - U as the ruin function for a risk process. Letting X and X<sub>0</sub> be two processes of the indicated form, it is shown that U ≤ U<sub>0</sub> if the two jump measures are ordered in a sense weaker than stochastic dominance. In the case where E(M) = <tex-math>$E(M_{0})$</tex-math>, a different condition on the jump measures yields E[f(M)] ≤ <tex-math>$E[f(M_{0})]$</tex-math> for all concave f, this resulting from second-order stochastic dominance of the supremum distributions. By way of application, processes with deterministic jumps are shown to be extremal in certain ways, and those with exponential jumps are shown to be extremal among the class having IFR jump distribution. Finally, an extremal property of Brownian Motion (which is not among the class of processes considered) is demonstrated, this yielding simple bounds for E[f(M)] with f concave or convex. It is shown how all the bounds obtained for U or E[f(M)] can be further sharpened with additional computation. 
540 |a Copyright 1977 The Institute of Management Sciences 
650 4 |a Brownian motion 
650 4 |a Collective risk theory 
650 4 |a Dam 
650 4 |a Infinitely divisible process 
650 4 |a M/G/1 queue 
650 4 |a Maxima 
650 4 |a Second-order stochastic dominance 
650 4 |a Stochastic dominance 
650 4 |a Storage process 
650 4 |a Mathematics  |x Mathematical procedures  |x Approximation 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Brownian motion 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Traffic 
650 4 |a Philosophy  |x Metaphysics  |x Etiology  |x Determinism 
650 4 |a Economics  |x Economic disciplines  |x Financial economics  |x Insurance  |x Insurance expenses  |x Insurance premiums  |x Risk premiums 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables  |x Stochastic processes  |x Poisson process 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Measures of variability  |x Statistical variance 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Mathematics of Operations Research  |d Institute for Operations Research and the Management Sciences  |g 2(1977), 1, Seite 54-63  |w (DE-627)320435318  |w (DE-600)2004273-5  |x 15265471  |7 nnns 
773 1 8 |g volume:2  |g year:1977  |g number:1  |g pages:54-63 
856 4 0 |u https://www.jstor.org/stable/3689124  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_152 
912 |a GBV_ILN_187 
912 |a GBV_ILN_224 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2941 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 2  |j 1977  |e 1  |h 54-63