The Delay of Open Markovian Queueing Networks: Uniform Functional Bounds, Heavy Traffic Pole Multiplicities, and Stability

For open Markovian queueing networks, we study the functional dependence of the mean number in the system (and thus also the mean delay since it is proportional to it by Little's Theorem) on the arrival rate or load factor. We obtain linear programs (LPs) which provide bounds on the pole multip...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mathematics of Operations Research. - Institute for Operations Research and the Management Sciences. - 22(1997), 4, Seite 921-954
1. Verfasser: Humes,, C. (VerfasserIn)
Weitere Verfasser: Ou, J., Kumar, P. R.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:Mathematics of Operations Research
Schlagworte:Queueing networks Open networks Performance evaluation Scheduling policies Delay Stability Heavy traffic behavior Applied sciences Business Behavioral sciences mehr... Mathematics Information science Physical sciences
LEADER 01000caa a22002652 4500
001 JST056868758
003 DE-627
005 20240622025728.0
007 cr uuu---uuuuu
008 150324s1997 xx |||||o 00| ||eng c
035 |a (DE-627)JST056868758 
035 |a (JST)3690256 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 60K25  |2 MSC 
084 |a 90B22  |2 MSC 
100 1 |a Humes,, C.  |e verfasserin  |4 aut 
245 1 4 |a The Delay of Open Markovian Queueing Networks: Uniform Functional Bounds, Heavy Traffic Pole Multiplicities, and Stability 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a For open Markovian queueing networks, we study the functional dependence of the mean number in the system (and thus also the mean delay since it is proportional to it by Little's Theorem) on the arrival rate or load factor. We obtain linear programs (LPs) which provide bounds on the pole multiplicity M of the mean number in the system, and automatically obtain lower and upper bounds on the coefficients <tex-math>$\{C_{i}\}$</tex-math> of the expansion <tex-math>$\rho C_{M}/(1-\rho)^{M}+\rho C_{M-1}/(1-\rho)^{M-1}+\cdots +\rho C_{1}/(1-\rho)+\rho C_{0}$</tex-math>, where ρ is the load factor, which are valid for all ρ ∈ [0, 1). Our LPs can thus establish the stability of open networks for all arrival rates within capacity, while providing uniformly bounding functional expansions for the mean delay, valid for all arrival rates in the capacity region. The coefficients <tex-math>$\{C_{i}\}$</tex-math> can be optimized to provide the best bound at any desired value of the load factor, while still maintaining its validity for all ρ ∈ [0, 1). While the above LPs feature L(L + 1)(M + 1)/2 variables where L is the number of buffers in the network, for balanced systems we further provide a lower dimensional LP featuring just S(S + 1)/2 variables, where S is the number of stations in the network. This bound asymptotically dominates in heavy traffic a bound obtainable from the Pollaczek-Khintchine formula, and can capture interactions between multiple bottleneck stations in heavy traffic. We also provide an explicit upper bound for all scheduling policies in acyclic networks, and for the FBFS policy in open re-entrant lines. 
540 |a Copyright 1997 Institute for Operations Research and the Management Sciences 
650 4 |a Queueing networks 
650 4 |a Open networks 
650 4 |a Performance evaluation 
650 4 |a Scheduling policies 
650 4 |a Delay 
650 4 |a Stability 
650 4 |a Heavy traffic behavior 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Traffic 
650 4 |a Business  |x Business economics  |x Commercial production  |x Production resources  |x Resource management  |x Time management  |x Scheduling 
650 4 |a Behavioral sciences  |x Psychology  |x Cognitive psychology  |x Decision theory  |x Operations research  |x Queuing theory  |x Queueing networks 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Coefficients 
650 4 |a Applied sciences  |x Computer science  |x Computer programming  |x Mathematical programming  |x Linear programming 
650 4 |a Mathematics  |x Mathematical values  |x Mathematical constants  |x Growth constants 
650 4 |a Information science  |x Information resources  |x Research data sources  |x Research review studies  |x Technical reports 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Service industries  |x Hospitality industries  |x Restaurant industry  |x Restaurants  |x Automats 
650 4 |a Mathematics 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Classical mechanics  |x Kinematics  |x Load forces 
655 4 |a research-article 
700 1 |a Ou, J.  |e verfasserin  |4 aut 
700 1 |a Kumar, P. R.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Mathematics of Operations Research  |d Institute for Operations Research and the Management Sciences  |g 22(1997), 4, Seite 921-954  |w (DE-627)320435318  |w (DE-600)2004273-5  |x 15265471  |7 nnns 
773 1 8 |g volume:22  |g year:1997  |g number:4  |g pages:921-954 
856 4 0 |u https://www.jstor.org/stable/3690256  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_152 
912 |a GBV_ILN_187 
912 |a GBV_ILN_224 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2941 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 22  |j 1997  |e 4  |h 921-954