Primary Production in Two Shallow Lakes with Contrasting Plant Form Dominance: A Paradox of Enrichment?

We estimated total lake plant biomass and primary net production in two shallow Swedish lakes that differ in nutrient loading and plant form dominance. In clearwater Lake $Krankesj\ddot{o}n$ ( $10 \mug$ chlorophyll a L-1), submerged macrophytes contributed more than phytoplankton and epiphyton to th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Limnology and Oceanography. - The American Society of Limnology and Oceanography. - 51(2006), 6, Seite 2711-2721
Weitere Verfasser: Schubert, H.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Limnology and Oceanography
Schlagworte:Biological sciences Physical sciences Economics Environmental studies
LEADER 01000caa a22002652 4500
001 JST055538193
003 DE-627
005 20240622011202.0
007 cr uuu---uuuuu
008 150324s2006 xx |||||o 00| ||eng c
035 |a (DE-627)JST055538193 
035 |a (JST)4499650 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
245 1 0 |a Primary Production in Two Shallow Lakes with Contrasting Plant Form Dominance: A Paradox of Enrichment? 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We estimated total lake plant biomass and primary net production in two shallow Swedish lakes that differ in nutrient loading and plant form dominance. In clearwater Lake $Krankesj\ddot{o}n$ ( $10 \mug$ chlorophyll a L-1), submerged macrophytes contributed more than phytoplankton and epiphyton to the estimated plant biomass. Estimated net primary production during May to September was 90-130, 1.2, and $14 g C m^{-2}$ for phytoplankton, epiphyton, and submerged macrophytes, respectively. In turbid Lake $B\ddot{o}rringesj\ddot{o}n$ ( $60-80 \mug$ chlorophyll a L-1), primary production by submerged macrophytes and periphyton was negligible. Although gross primary production of phytoplankton was high close to the water surface, estimated areal net primary production during May to September was low, -40 to $+25 g C m^{-2}$ , as a result of self-shading and high respiration. Grazing pressure from zooplankton rarely exceeded $15\% d^{-1}$ in both lakes, indicating that phytoplankton production was not limited by grazing. Low gross epiphyton production could result from high grazing by macroinvertebrates and thus higher trophic transfer efficiency through the benthic than through the pelagic food web. Provided that conditions in Lake $B\ddot{o}rringesj\ddot{o}n$ reflect previous turbid state conditions in Lake $Krankesj\ddot{o}n$ , our results may explain why a shift to a clearwater state was followed by increased biomass of higher trophic levels. Our results also support the paradox of enrichment hypothesis, which predicts lower productivity at high nutrient loading. Contrary to former investigations, we found lower production at a higher nutrient loading already at the trophic level of primary producers. 
540 |a Copyright 2006 American Society of Limnology and Oceanography 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Phytoplankton 
650 4 |a Biological sciences  |x Ecology  |x Ecological processes  |x Biological productivity  |x Primary productivity 
650 4 |a Biological sciences  |x Ecology  |x Biomass  |x Biomass production 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Aquatic plants  |x Macrophytes 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Lakes 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Aquatic ecosystems  |x Lentic systems 
650 4 |a Economics  |x Economic disciplines  |x Applied economics  |x Econometrics  |x Economic statistics  |x Production statistics  |x Production estimates 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Biological sciences  |x Biology  |x Marine biology  |x Aquatic organisms  |x Plankton  |x Zooplankton 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental degradation  |x Environmental pollution  |x Pollution load 
655 4 |a research-article 
700 1 |a Schubert, H.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Limnology and Oceanography  |d The American Society of Limnology and Oceanography  |g 51(2006), 6, Seite 2711-2721  |w (DE-627)324959702  |w (DE-600)2033191-5  |x 00243590  |7 nnns 
773 1 8 |g volume:51  |g year:2006  |g number:6  |g pages:2711-2721 
856 4 0 |u https://www.jstor.org/stable/4499650  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 51  |j 2006  |e 6  |h 2711-2721