Frequent Regime Shifts in Trophic States in Shallow Lakes on the Boreal Plain: Alternative "Unstable" States?

Shallow lakes are known to exhibit alternative states in their biotic structure. Lakes dominated by submersed aquatic vegetation (SAV) are "clear," while lakes dominated by algae (high concentrations of chlorophyll a [Chl a]) are "turbid." The roles of total phosphorus (TP) and S...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Limnology and Oceanography. - The American Society of Limnology and Oceanography. - 52(2007), 5, Seite 2002-2012
1. Verfasser: Bayley, S. E. (VerfasserIn)
Weitere Verfasser: Wong, A. S.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Limnology and Oceanography
Schlagworte:Physical sciences Biological sciences Environmental studies Applied sciences
LEADER 01000caa a22002652 4500
001 JST05548896X
003 DE-627
005 20240622010227.0
007 cr uuu---uuuuu
008 150324s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST05548896X 
035 |a (JST)4502352 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bayley, S. E.  |e verfasserin  |4 aut 
245 1 0 |a Frequent Regime Shifts in Trophic States in Shallow Lakes on the Boreal Plain: Alternative "Unstable" States? 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Shallow lakes are known to exhibit alternative states in their biotic structure. Lakes dominated by submersed aquatic vegetation (SAV) are "clear," while lakes dominated by algae (high concentrations of chlorophyll a [Chl a]) are "turbid." The roles of total phosphorus (TP) and SAV in defining these alternative states were examined for up to 6 yr in 24 naturally eutrophic shallow lakes (<tex-math>$12.4-670.4 \mu g TP L^{-1}$</tex-math>) with variable SAV cover (0-100%) on the western Boreal Plain in Alberta, Canada. Clear lakes had <latex>$<18 \mu g Chl a L^{-1}$</latex>. Sixty-seven percent of lakes were clear in any given year, but individual lakes did not remain clear over consecutive years. While 29% did not switch, 71% of lakes were unstable, with 57% switching states once and 14% switching more than once. To increase the temporal and spatial scale of analysis, we used Landsat Thematic Mapper satellite imagery (1984-2003) to classify clarity for up to 20 yr in 82 naturally eutrophic shallow lakes. Approximately 80% of lakes were unstable, with 7% switching once and more than 73% switching 2-9 times. Only 20% of lakes were stable and clear. Switches in lake clarity were related to TP but were also dependent on the abundance of SAV. For lakes with high SAV, the TP threshold for the transition from clear to turbid was <tex-math>$275 \mu g TP L^{-1}$</tex-math>, while for lakes with low SAV, the TP threshold was <tex-math>$50 \mu g TP L^{-1}$</tex-math>. Given the harsh winter conditions, including lakes with ice depths of up to 0.7 m and anoxia leading to winterkill of aquatic communities, these systems are strongly abiotically regulated and lack mechanisms that maintain a lake in a stable state. 
540 |a Copyright 2007 American Society of Limnology and Oceanography, Inc. 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Lakes 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Aquatic ecosystems  |x Lentic systems 
650 4 |a Physical sciences  |x Chemistry  |x Chemical elements  |x Phosphorus 
650 4 |a Physical sciences  |x Earth sciences  |x Geology  |x Glaciology  |x Glacial landforms  |x Glacial lakes 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Fish  |x Freshwater fishes 
650 4 |a Biological sciences  |x Ecology  |x Biomass 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Marine botany  |x Aquatic plants  |x Macrophytes 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Climatology  |x Seasons 
650 4 |a Applied sciences  |x Engineering  |x Aerospace engineering  |x Astronautics  |x Artificial satellites  |x Communications satellites  |x Landsat 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
655 4 |a research-article 
700 1 |a Wong, A. S.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Limnology and Oceanography  |d The American Society of Limnology and Oceanography  |g 52(2007), 5, Seite 2002-2012  |w (DE-627)324959702  |w (DE-600)2033191-5  |x 00243590  |7 nnns 
773 1 8 |g volume:52  |g year:2007  |g number:5  |g pages:2002-2012 
856 4 0 |u https://www.jstor.org/stable/4502352  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 52  |j 2007  |e 5  |h 2002-2012